一个探索性和剥削性的突变方案

F. Vafaee, P. Nelson
{"title":"一个探索性和剥削性的突变方案","authors":"F. Vafaee, P. Nelson","doi":"10.1109/CEC.2010.5586142","DOIUrl":null,"url":null,"abstract":"Exploration and exploitation are the two cornerstones which characterize Evolutionary Algorithms (EAs) capabilities. Maintaining the reciprocal balance of the explorative and exploitative power is the key to the success of EA applications. Accordingly, in this work the canonical Genetic Algorithm is augmented by a new mutation scheme that is capable of exploring the unseen regions of the search space, and simultaneously exploiting the already-found promising elements. The proposed mutation operator specifies different mutation rates for different sites (loci) of the individuals. These site-specific rates are wisely derived based on the fitness and structure of the population individuals. In order to retain the balance of the required exploration and exploitation, the mutation rates are adapted during the evolution. To demonstrate the efficacy of the proposed algorithm, the method is evaluated using a set of benchmark problems and the outcome is compared with a series of well-known relevant algorithms. The results demonstrate that the newly suggested method significantly outperforms its rivals.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"126 3","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"An explorative and exploitative mutation scheme\",\"authors\":\"F. Vafaee, P. Nelson\",\"doi\":\"10.1109/CEC.2010.5586142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploration and exploitation are the two cornerstones which characterize Evolutionary Algorithms (EAs) capabilities. Maintaining the reciprocal balance of the explorative and exploitative power is the key to the success of EA applications. Accordingly, in this work the canonical Genetic Algorithm is augmented by a new mutation scheme that is capable of exploring the unseen regions of the search space, and simultaneously exploiting the already-found promising elements. The proposed mutation operator specifies different mutation rates for different sites (loci) of the individuals. These site-specific rates are wisely derived based on the fitness and structure of the population individuals. In order to retain the balance of the required exploration and exploitation, the mutation rates are adapted during the evolution. To demonstrate the efficacy of the proposed algorithm, the method is evaluated using a set of benchmark problems and the outcome is compared with a series of well-known relevant algorithms. The results demonstrate that the newly suggested method significantly outperforms its rivals.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"126 3\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

探索和利用是进化算法(EAs)能力的两个基石。保持探索能力和利用能力的相互平衡是EA应用程序成功的关键。因此,在这项工作中,规范的遗传算法被一个新的突变方案所增强,该方案能够探索搜索空间中看不见的区域,同时利用已经发现的有希望的元素。所提出的突变算子为个体的不同位点(位点)指定不同的突变率。这些特定地点的比率是根据种群个体的适合度和结构明智地推导出来的。为了保持所需的探索和开发的平衡,在进化过程中对突变率进行调整。为了证明该算法的有效性,使用一组基准问题对该方法进行了评估,并将结果与一系列知名的相关算法进行了比较。结果表明,新提出的方法明显优于其竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An explorative and exploitative mutation scheme
Exploration and exploitation are the two cornerstones which characterize Evolutionary Algorithms (EAs) capabilities. Maintaining the reciprocal balance of the explorative and exploitative power is the key to the success of EA applications. Accordingly, in this work the canonical Genetic Algorithm is augmented by a new mutation scheme that is capable of exploring the unseen regions of the search space, and simultaneously exploiting the already-found promising elements. The proposed mutation operator specifies different mutation rates for different sites (loci) of the individuals. These site-specific rates are wisely derived based on the fitness and structure of the population individuals. In order to retain the balance of the required exploration and exploitation, the mutation rates are adapted during the evolution. To demonstrate the efficacy of the proposed algorithm, the method is evaluated using a set of benchmark problems and the outcome is compared with a series of well-known relevant algorithms. The results demonstrate that the newly suggested method significantly outperforms its rivals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1