{"title":"观察时间与数字表型的表现","authors":"Thomas R Quisel, Wei-Nchih Lee, L. Foschini","doi":"10.1145/3089341.3089347","DOIUrl":null,"url":null,"abstract":"Mobile health (mHealth) technologies enable frequent sampling of physiological and psychological signals over time. In our recent work we used a convolutional neural network (CNN) model to predict self-reported phenotypes of chronic conditions from step and sleep data recorded from passive trackers in free living conditions. We investigated the impact of the time-granularity of the collected data and showed that training the models on higher- resolution (minute-level) data improved classification performance on conditions related to mental health and nervous system disorders, as compared to using only day-level totals. In the present work we shift the focus from the time resolution of the observation window to its duration. We study how the performance of the best-performing model on the highest-resolution data changes as the length of the data collection window is varied from 3 to 147 days for each user. We found that for mental health and nervous system disorders, a model trained on 30 days of mHealth data attains the same performance as using the full 147-day window of data, in terms of AUC increase over a baseline model that uses only demographics, height, and weight. Additionally, for the same cluster of conditions, only 7 days of data are sufficient to realize 62% of the maximum increase in AUC over baseline attainable using the full window. The results suggest that for some conditions health-related digital phenotyping in free-living conditions can potentially be performed in a relatively short amount of time, imposing minimal disruptions on user habits.","PeriodicalId":92197,"journal":{"name":"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Observation Time vs. Performance in Digital Phenotyping\",\"authors\":\"Thomas R Quisel, Wei-Nchih Lee, L. Foschini\",\"doi\":\"10.1145/3089341.3089347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile health (mHealth) technologies enable frequent sampling of physiological and psychological signals over time. In our recent work we used a convolutional neural network (CNN) model to predict self-reported phenotypes of chronic conditions from step and sleep data recorded from passive trackers in free living conditions. We investigated the impact of the time-granularity of the collected data and showed that training the models on higher- resolution (minute-level) data improved classification performance on conditions related to mental health and nervous system disorders, as compared to using only day-level totals. In the present work we shift the focus from the time resolution of the observation window to its duration. We study how the performance of the best-performing model on the highest-resolution data changes as the length of the data collection window is varied from 3 to 147 days for each user. We found that for mental health and nervous system disorders, a model trained on 30 days of mHealth data attains the same performance as using the full 147-day window of data, in terms of AUC increase over a baseline model that uses only demographics, height, and weight. Additionally, for the same cluster of conditions, only 7 days of data are sufficient to realize 62% of the maximum increase in AUC over baseline attainable using the full window. The results suggest that for some conditions health-related digital phenotyping in free-living conditions can potentially be performed in a relatively short amount of time, imposing minimal disruptions on user habits.\",\"PeriodicalId\":92197,\"journal\":{\"name\":\"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3089341.3089347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3089341.3089347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Observation Time vs. Performance in Digital Phenotyping
Mobile health (mHealth) technologies enable frequent sampling of physiological and psychological signals over time. In our recent work we used a convolutional neural network (CNN) model to predict self-reported phenotypes of chronic conditions from step and sleep data recorded from passive trackers in free living conditions. We investigated the impact of the time-granularity of the collected data and showed that training the models on higher- resolution (minute-level) data improved classification performance on conditions related to mental health and nervous system disorders, as compared to using only day-level totals. In the present work we shift the focus from the time resolution of the observation window to its duration. We study how the performance of the best-performing model on the highest-resolution data changes as the length of the data collection window is varied from 3 to 147 days for each user. We found that for mental health and nervous system disorders, a model trained on 30 days of mHealth data attains the same performance as using the full 147-day window of data, in terms of AUC increase over a baseline model that uses only demographics, height, and weight. Additionally, for the same cluster of conditions, only 7 days of data are sufficient to realize 62% of the maximum increase in AUC over baseline attainable using the full window. The results suggest that for some conditions health-related digital phenotyping in free-living conditions can potentially be performed in a relatively short amount of time, imposing minimal disruptions on user habits.