{"title":"离子液体火箭燃料四氮唑衍生物的合成及其滞燃时间和粘度的研究","authors":"Hyun-Woong Lee, Seongho Choi","doi":"10.9766/kimst.2022.25.3.285","DOIUrl":null,"url":null,"abstract":"In order to use the liquid rocket fuel, 1,5-diamino-4-methyltetrazolium azide, [DMT]+[N3]- and 1,5-diamino-4-methyltetrazolium cyanide, [DMT]+[CN]- were synthesized and prepared the ionic liquid rocket fuel after dissolving the synthesized solid-type energetic chemicals in hydrazine, respectively. The thermal decomposition temperatures(Td) and densities(d) of the prepared ionic liquid rocket fuels were about 200 ℃ and above 1.0 g/cm3 respectively. The ignition delay times(Idt) of the ionic liqud rock fuels with [DMT]+[N3]- and [DMT]+[CN]- were in a range of 26.6 - 82.5 ms and the 44.0 - 98.5 ms, respectively. These results mean that the synthesized tetrazolium salts could be used as an ionic liquid rocket fuels. The viscosities of the ionic liqud rock fuels with [DMT]+[N3]- and [DMT]+[CN]-, which were dissolved in mixture solution of hydrazine/2-hydroxyethylhydrazine were to be 1.34 - 101 cP, and 1.29 - 80.5 cP, respectively. The synthesized ionic liquid rocket fuels in this study could be used as rocket fuel because the [Idt(100 ms or less), Td(150 ℃ or more), d(1.00 g/cm3 or more), and η (40.0~ 100 cP)] were achieved to satisfy the range of the used liquid rocket fuels.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":"29 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of the Tetrazolium Derivatives for Ionic Liquid Rocket Fuel and a Study of Their Ignition Delay Time and Viscosity\",\"authors\":\"Hyun-Woong Lee, Seongho Choi\",\"doi\":\"10.9766/kimst.2022.25.3.285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to use the liquid rocket fuel, 1,5-diamino-4-methyltetrazolium azide, [DMT]+[N3]- and 1,5-diamino-4-methyltetrazolium cyanide, [DMT]+[CN]- were synthesized and prepared the ionic liquid rocket fuel after dissolving the synthesized solid-type energetic chemicals in hydrazine, respectively. The thermal decomposition temperatures(Td) and densities(d) of the prepared ionic liquid rocket fuels were about 200 ℃ and above 1.0 g/cm3 respectively. The ignition delay times(Idt) of the ionic liqud rock fuels with [DMT]+[N3]- and [DMT]+[CN]- were in a range of 26.6 - 82.5 ms and the 44.0 - 98.5 ms, respectively. These results mean that the synthesized tetrazolium salts could be used as an ionic liquid rocket fuels. The viscosities of the ionic liqud rock fuels with [DMT]+[N3]- and [DMT]+[CN]-, which were dissolved in mixture solution of hydrazine/2-hydroxyethylhydrazine were to be 1.34 - 101 cP, and 1.29 - 80.5 cP, respectively. The synthesized ionic liquid rocket fuels in this study could be used as rocket fuel because the [Idt(100 ms or less), Td(150 ℃ or more), d(1.00 g/cm3 or more), and η (40.0~ 100 cP)] were achieved to satisfy the range of the used liquid rocket fuels.\",\"PeriodicalId\":17292,\"journal\":{\"name\":\"Journal of the Korea Institute of Military Science and Technology\",\"volume\":\"29 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korea Institute of Military Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9766/kimst.2022.25.3.285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2022.25.3.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of the Tetrazolium Derivatives for Ionic Liquid Rocket Fuel and a Study of Their Ignition Delay Time and Viscosity
In order to use the liquid rocket fuel, 1,5-diamino-4-methyltetrazolium azide, [DMT]+[N3]- and 1,5-diamino-4-methyltetrazolium cyanide, [DMT]+[CN]- were synthesized and prepared the ionic liquid rocket fuel after dissolving the synthesized solid-type energetic chemicals in hydrazine, respectively. The thermal decomposition temperatures(Td) and densities(d) of the prepared ionic liquid rocket fuels were about 200 ℃ and above 1.0 g/cm3 respectively. The ignition delay times(Idt) of the ionic liqud rock fuels with [DMT]+[N3]- and [DMT]+[CN]- were in a range of 26.6 - 82.5 ms and the 44.0 - 98.5 ms, respectively. These results mean that the synthesized tetrazolium salts could be used as an ionic liquid rocket fuels. The viscosities of the ionic liqud rock fuels with [DMT]+[N3]- and [DMT]+[CN]-, which were dissolved in mixture solution of hydrazine/2-hydroxyethylhydrazine were to be 1.34 - 101 cP, and 1.29 - 80.5 cP, respectively. The synthesized ionic liquid rocket fuels in this study could be used as rocket fuel because the [Idt(100 ms or less), Td(150 ℃ or more), d(1.00 g/cm3 or more), and η (40.0~ 100 cP)] were achieved to satisfy the range of the used liquid rocket fuels.