Anja Haasbroek-Pheiffer, Suzanne Van Niekerk, Frank Van der Kooy, Theunis Cloete, Jan Steenekamp, Josias Hamman
{"title":"体外和离体实验模型用于评估经鼻全身给药和直接经鼻至脑给药","authors":"Anja Haasbroek-Pheiffer, Suzanne Van Niekerk, Frank Van der Kooy, Theunis Cloete, Jan Steenekamp, Josias Hamman","doi":"10.1002/bdd.2348","DOIUrl":null,"url":null,"abstract":"<p>The intranasal route of administration provides a noninvasive method to deliver drugs into the systemic circulation and/or directly into the brain. Direct nose-to-brain drug delivery offers the possibility to treat central nervous system diseases more effectively, as it can evade the blood–brain barrier. <i>In vitro</i> and <i>ex vivo</i> intranasal models provide a means to investigate physiological and pharmaceutical factors that could play a role in drug delivery across the nasal epithelium as well as to determine the mechanisms involved in drug absorption from the nose. The development and implementation of cost-effective pharmacokinetic models for intranasal drug delivery with good <i>in vitro</i>-<i>in vivo</i> correlation can accelerate pharmaceutical drug product development and improve economic and ecological aspects by reducing the time and costs spent on animal studies. Special considerations should be made with regard to the purpose of the <i>in vitro</i>/<i>ex vivo</i> study, namely, whether it is intended to predict systemic or brain delivery, source and site of tissue or cell sampling, viability window of selected model, and the experimental setup of diffusion chambers. The type of model implemented should suit the relevant needs and requirements of the project, researcher, and interlaboratory. This review aims to provide an overview of <i>in vitro</i> and <i>ex vivo</i> models that have been developed to study intranasal and direct nose-to-brain drug delivery.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"44 1","pages":"94-112"},"PeriodicalIF":1.7000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bdd.2348","citationCount":"2","resultStr":"{\"title\":\"In vitro and ex vivo experimental models for evaluation of intranasal systemic drug delivery as well as direct nose-to-brain drug delivery\",\"authors\":\"Anja Haasbroek-Pheiffer, Suzanne Van Niekerk, Frank Van der Kooy, Theunis Cloete, Jan Steenekamp, Josias Hamman\",\"doi\":\"10.1002/bdd.2348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The intranasal route of administration provides a noninvasive method to deliver drugs into the systemic circulation and/or directly into the brain. Direct nose-to-brain drug delivery offers the possibility to treat central nervous system diseases more effectively, as it can evade the blood–brain barrier. <i>In vitro</i> and <i>ex vivo</i> intranasal models provide a means to investigate physiological and pharmaceutical factors that could play a role in drug delivery across the nasal epithelium as well as to determine the mechanisms involved in drug absorption from the nose. The development and implementation of cost-effective pharmacokinetic models for intranasal drug delivery with good <i>in vitro</i>-<i>in vivo</i> correlation can accelerate pharmaceutical drug product development and improve economic and ecological aspects by reducing the time and costs spent on animal studies. Special considerations should be made with regard to the purpose of the <i>in vitro</i>/<i>ex vivo</i> study, namely, whether it is intended to predict systemic or brain delivery, source and site of tissue or cell sampling, viability window of selected model, and the experimental setup of diffusion chambers. The type of model implemented should suit the relevant needs and requirements of the project, researcher, and interlaboratory. This review aims to provide an overview of <i>in vitro</i> and <i>ex vivo</i> models that have been developed to study intranasal and direct nose-to-brain drug delivery.</p>\",\"PeriodicalId\":8865,\"journal\":{\"name\":\"Biopharmaceutics & Drug Disposition\",\"volume\":\"44 1\",\"pages\":\"94-112\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bdd.2348\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopharmaceutics & Drug Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2348\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2348","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
In vitro and ex vivo experimental models for evaluation of intranasal systemic drug delivery as well as direct nose-to-brain drug delivery
The intranasal route of administration provides a noninvasive method to deliver drugs into the systemic circulation and/or directly into the brain. Direct nose-to-brain drug delivery offers the possibility to treat central nervous system diseases more effectively, as it can evade the blood–brain barrier. In vitro and ex vivo intranasal models provide a means to investigate physiological and pharmaceutical factors that could play a role in drug delivery across the nasal epithelium as well as to determine the mechanisms involved in drug absorption from the nose. The development and implementation of cost-effective pharmacokinetic models for intranasal drug delivery with good in vitro-in vivo correlation can accelerate pharmaceutical drug product development and improve economic and ecological aspects by reducing the time and costs spent on animal studies. Special considerations should be made with regard to the purpose of the in vitro/ex vivo study, namely, whether it is intended to predict systemic or brain delivery, source and site of tissue or cell sampling, viability window of selected model, and the experimental setup of diffusion chambers. The type of model implemented should suit the relevant needs and requirements of the project, researcher, and interlaboratory. This review aims to provide an overview of in vitro and ex vivo models that have been developed to study intranasal and direct nose-to-brain drug delivery.
期刊介绍:
Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes:
- animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites,
- in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man
- studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition,
- simulation and modeling in drug discovery and development
- theoretical treatises
- includes themed issues and reviews
and exclude manuscripts on
- bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation
- analytical methods