基于矩阵牛顿迭代的并行非负张量分解

M. Flatz, M. Vajtersic
{"title":"基于矩阵牛顿迭代的并行非负张量分解","authors":"M. Flatz, M. Vajtersic","doi":"10.1109/HPCSim.2014.6903803","DOIUrl":null,"url":null,"abstract":"Nonnegative Matrix Factorization (NMF) is a technique to approximate a large nonnegative matrix as a product of two significantly smaller nonnegative matrices. Since matrices can be seen as second-order tensors, NMF can be generalized to Nonnegative Tensor Factorization (NTF). To compute an NTF, the tensor problem can be transformed into a matrix problem by using matricization. Any NMF algorithm can be used to process such a matricized tensor, including a method based on Newton iteration. Here, an approach will be presented to adopt our parallel design of the Newton algorithm for NMF to compute an NTF in parallel for tensors of any order.","PeriodicalId":6469,"journal":{"name":"2014 International Conference on High Performance Computing & Simulation (HPCS)","volume":"6 11-12","pages":"1014-1015"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel nonnegative tensor factorization via newton iteration on matrices\",\"authors\":\"M. Flatz, M. Vajtersic\",\"doi\":\"10.1109/HPCSim.2014.6903803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonnegative Matrix Factorization (NMF) is a technique to approximate a large nonnegative matrix as a product of two significantly smaller nonnegative matrices. Since matrices can be seen as second-order tensors, NMF can be generalized to Nonnegative Tensor Factorization (NTF). To compute an NTF, the tensor problem can be transformed into a matrix problem by using matricization. Any NMF algorithm can be used to process such a matricized tensor, including a method based on Newton iteration. Here, an approach will be presented to adopt our parallel design of the Newton algorithm for NMF to compute an NTF in parallel for tensors of any order.\",\"PeriodicalId\":6469,\"journal\":{\"name\":\"2014 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"6 11-12\",\"pages\":\"1014-1015\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2014.6903803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2014.6903803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非负矩阵分解(NMF)是一种将一个大的非负矩阵近似为两个显著较小的非负矩阵的乘积的技术。由于矩阵可以看作是二阶张量,NMF可以推广到非负张量分解(NTF)。为了计算NTF,可以使用矩阵化将张量问题转化为矩阵问题。任何NMF算法都可以用来处理这样一个矩阵化张量,包括基于牛顿迭代的方法。在这里,我们将提出一种方法,采用牛顿算法的NMF并行设计来并行计算任意阶张量的NTF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel nonnegative tensor factorization via newton iteration on matrices
Nonnegative Matrix Factorization (NMF) is a technique to approximate a large nonnegative matrix as a product of two significantly smaller nonnegative matrices. Since matrices can be seen as second-order tensors, NMF can be generalized to Nonnegative Tensor Factorization (NTF). To compute an NTF, the tensor problem can be transformed into a matrix problem by using matricization. Any NMF algorithm can be used to process such a matricized tensor, including a method based on Newton iteration. Here, an approach will be presented to adopt our parallel design of the Newton algorithm for NMF to compute an NTF in parallel for tensors of any order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI4IO: A Suite of Ai-Based Tools for IO-Aware HPC Resource Management Improving Efficiency and Performance Through Faster Scheduling Mechanisms Towards an Integral System for Processing Big Graphs at Scale Advances in High Performance Computing - Results of the International Conference on "High Performance Computing", HPC 2019, Borovets, Bulgaria, September 2-6, 2019 Role of HPC in next-generation AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1