热液发生器:一种脉冲电源,产生强烈的压力脉冲

W. Hartmann, J. Kieser, K. Rohde
{"title":"热液发生器:一种脉冲电源,产生强烈的压力脉冲","authors":"W. Hartmann, J. Kieser, K. Rohde","doi":"10.1109/PPC.1999.823597","DOIUrl":null,"url":null,"abstract":"Intense pressure pulses, often focussed to form strong shockwaves, are used for a variety of medical and industrial applications. In this contribution, a new principle-the thermohydraulic generation of strong pressure (sound) pulses-is reported which promises a considerably extended lifetime. The energy efficiency is comparable to that of commercial shockwave sources based on the magnetodynamic principle. The underlying physics is that of the generation of strong thermoelastic waves in electrically conducting media, in particular in electrolytes, by direct ohmic heating with intense current pulses. A simplified model is discussed to describe the pressure amplitudes and the influence of the thermoacoustic properties of the electrolyte. The source is scalable over a large range, and is arbitrarily adaptable in its shape. Large-area plane waves with amplitudes of up to 5 MPa have been achieved, as well as a self-focusing geometry with peak pressures of over 70 MPa.","PeriodicalId":11209,"journal":{"name":"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)","volume":"89 10","pages":"654-657 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The thermohydraulic generator: a pulse power source of intense pressure pulses\",\"authors\":\"W. Hartmann, J. Kieser, K. Rohde\",\"doi\":\"10.1109/PPC.1999.823597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intense pressure pulses, often focussed to form strong shockwaves, are used for a variety of medical and industrial applications. In this contribution, a new principle-the thermohydraulic generation of strong pressure (sound) pulses-is reported which promises a considerably extended lifetime. The energy efficiency is comparable to that of commercial shockwave sources based on the magnetodynamic principle. The underlying physics is that of the generation of strong thermoelastic waves in electrically conducting media, in particular in electrolytes, by direct ohmic heating with intense current pulses. A simplified model is discussed to describe the pressure amplitudes and the influence of the thermoacoustic properties of the electrolyte. The source is scalable over a large range, and is arbitrarily adaptable in its shape. Large-area plane waves with amplitudes of up to 5 MPa have been achieved, as well as a self-focusing geometry with peak pressures of over 70 MPa.\",\"PeriodicalId\":11209,\"journal\":{\"name\":\"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)\",\"volume\":\"89 10\",\"pages\":\"654-657 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.1999.823597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1999.823597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

强烈的压力脉冲,通常集中形成强烈的冲击波,用于各种医疗和工业应用。在这篇贡献中,报告了一种新的原理-强压力(声音)脉冲的热水力产生-有望大大延长寿命。基于磁动力学原理的能量效率可与商用激波源相媲美。其基本的物理原理是在导电介质中,特别是在电解质中,通过用强电流脉冲直接欧姆加热而产生强烈的热弹性波。讨论了一个简化模型来描述压力幅值和电解质热声特性的影响。该源可在大范围内扩展,并且可任意调整其形状。已经实现了振幅高达5 MPa的大面积平面波,以及峰值压力超过70 MPa的自聚焦几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The thermohydraulic generator: a pulse power source of intense pressure pulses
Intense pressure pulses, often focussed to form strong shockwaves, are used for a variety of medical and industrial applications. In this contribution, a new principle-the thermohydraulic generation of strong pressure (sound) pulses-is reported which promises a considerably extended lifetime. The energy efficiency is comparable to that of commercial shockwave sources based on the magnetodynamic principle. The underlying physics is that of the generation of strong thermoelastic waves in electrically conducting media, in particular in electrolytes, by direct ohmic heating with intense current pulses. A simplified model is discussed to describe the pressure amplitudes and the influence of the thermoacoustic properties of the electrolyte. The source is scalable over a large range, and is arbitrarily adaptable in its shape. Large-area plane waves with amplitudes of up to 5 MPa have been achieved, as well as a self-focusing geometry with peak pressures of over 70 MPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gas-puff z-pinch plasmas driven by inductive voltage adder-inductive energy storage pulsed power generator ASO-X The evolution of pulsed discharges over PTFE in the presence of various cover gases Numerical research of radiation parameters in cavities irradiated from imploding double-cascade Z-pinch 100 kV, 10 pps repetitive impulse current generator Z, ZX, and X-1: a realistic path to high fusion yield
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1