物联网雾建模的半参数模型集成

Tony Jan, Saeid Iranmanesh, A. Sajeev
{"title":"物联网雾建模的半参数模型集成","authors":"Tony Jan, Saeid Iranmanesh, A. Sajeev","doi":"10.1109/SSCI44817.2019.9003089","DOIUrl":null,"url":null,"abstract":"This paper proposes an innovative machine learning algorithm for resource optimization in IoT fog network. The proposed model utilizes distributed semi-supervised learning with innovative ensemble learning for efficient resource optimization in the IoT fog network for improved availability and readiness. The proposed model shows a great potential for real-time IoT applications utilizing the efficient fog resource optimization. The proposed model is evaluated against other state-of the-art models using the benchmark data to demonstrate its readiness and usefulness in real-time mission critical IoT applications such as in unmanned vehicle control system. The proposed model shows an acceptable resource optimization performance with reasonable computational complexity which proves to be useful in real-time IoT applications.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"10 1","pages":"2995-2998"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble of Semi-Parametric Models for IoT Fog Modeling\",\"authors\":\"Tony Jan, Saeid Iranmanesh, A. Sajeev\",\"doi\":\"10.1109/SSCI44817.2019.9003089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an innovative machine learning algorithm for resource optimization in IoT fog network. The proposed model utilizes distributed semi-supervised learning with innovative ensemble learning for efficient resource optimization in the IoT fog network for improved availability and readiness. The proposed model shows a great potential for real-time IoT applications utilizing the efficient fog resource optimization. The proposed model is evaluated against other state-of the-art models using the benchmark data to demonstrate its readiness and usefulness in real-time mission critical IoT applications such as in unmanned vehicle control system. The proposed model shows an acceptable resource optimization performance with reasonable computational complexity which proves to be useful in real-time IoT applications.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"10 1\",\"pages\":\"2995-2998\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9003089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种创新的物联网雾网络资源优化机器学习算法。所提出的模型利用分布式半监督学习和创新的集成学习,在物联网雾网络中进行有效的资源优化,以提高可用性和准备度。该模型显示了利用有效雾资源优化的实时物联网应用的巨大潜力。使用基准数据对所提出的模型与其他最先进的模型进行评估,以证明其在实时关键任务物联网应用(如无人驾驶车辆控制系统)中的就绪性和实用性。该模型具有可接受的资源优化性能和合理的计算复杂度,可用于实时物联网应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble of Semi-Parametric Models for IoT Fog Modeling
This paper proposes an innovative machine learning algorithm for resource optimization in IoT fog network. The proposed model utilizes distributed semi-supervised learning with innovative ensemble learning for efficient resource optimization in the IoT fog network for improved availability and readiness. The proposed model shows a great potential for real-time IoT applications utilizing the efficient fog resource optimization. The proposed model is evaluated against other state-of the-art models using the benchmark data to demonstrate its readiness and usefulness in real-time mission critical IoT applications such as in unmanned vehicle control system. The proposed model shows an acceptable resource optimization performance with reasonable computational complexity which proves to be useful in real-time IoT applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1