用轻气枪研究了枪弹残余物类似物的冲击熔化

V. Spathis, M. Price
{"title":"用轻气枪研究了枪弹残余物类似物的冲击熔化","authors":"V. Spathis, M. Price","doi":"10.1115/hvis2019-030","DOIUrl":null,"url":null,"abstract":"\n In this set of experiments, the versatility of the University of Kent's light gas gun was utilised to obtain a selection of corroborative data regarding the formation and impact of metallic gunshot residues onto high purity silicon wafers. The results from the two experiments are presented. The first experiment investigated how the formation of metallic residues varied as gunshot residue analogues traversed through air under a range of pressures from 0.056 millibar (5.6 Pa) to 1 bar (100 kPa), using solely the energy released during primer ignition; the second involved firing a metallic powder mix of pre-determined composition (via a split-sabot) under vacuum at two velocities- 500 ms-1 and 2000 ms-1. This ensured that there was no ignition or heating of the powders, unlike the first experiment, and so the morphology of the particles collected would be solely due to impact. The residues on the substrates were then analysed using a cold Field Emission Gun Scanning Electron Microscope (FEG) and Energy Dispersive X-ray (EDX) detector. By separating the ignition process of the primers from the residue impacts, it allows for a closer look into the formation of these particles and helps determine whether their varied morphologies are due to the heating caused during the activation and combustion of the primer or whether its due to impact melting. This information can aid in the understanding of metallic particle formation in different pressure environments and give insight into the physical state of firearm residues when they impact a surface. Hydrocode modelling was also incorporated to corroborate the results observed during these experiments and gave results which mimicked the experimental data.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiments using a light gas gun to investigate the impact melting of gunshot residue analogues\",\"authors\":\"V. Spathis, M. Price\",\"doi\":\"10.1115/hvis2019-030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this set of experiments, the versatility of the University of Kent's light gas gun was utilised to obtain a selection of corroborative data regarding the formation and impact of metallic gunshot residues onto high purity silicon wafers. The results from the two experiments are presented. The first experiment investigated how the formation of metallic residues varied as gunshot residue analogues traversed through air under a range of pressures from 0.056 millibar (5.6 Pa) to 1 bar (100 kPa), using solely the energy released during primer ignition; the second involved firing a metallic powder mix of pre-determined composition (via a split-sabot) under vacuum at two velocities- 500 ms-1 and 2000 ms-1. This ensured that there was no ignition or heating of the powders, unlike the first experiment, and so the morphology of the particles collected would be solely due to impact. The residues on the substrates were then analysed using a cold Field Emission Gun Scanning Electron Microscope (FEG) and Energy Dispersive X-ray (EDX) detector. By separating the ignition process of the primers from the residue impacts, it allows for a closer look into the formation of these particles and helps determine whether their varied morphologies are due to the heating caused during the activation and combustion of the primer or whether its due to impact melting. This information can aid in the understanding of metallic particle formation in different pressure environments and give insight into the physical state of firearm residues when they impact a surface. Hydrocode modelling was also incorporated to corroborate the results observed during these experiments and gave results which mimicked the experimental data.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这组实验中,肯特大学的光气枪的多功能性被用来获得关于金属射击残留物在高纯度硅晶片上的形成和影响的佐证数据。给出了两个实验的结果。第一个实验研究了在0.056毫巴(5.6 Pa)到1巴(100 kPa)的压力范围内,仅使用底火点火时释放的能量,射击残留物类似物在空气中穿行时金属残留物的形成是如何变化的;第二种方法是在真空条件下以两种速度——500ms -1和2000ms -1——发射预先确定成分的金属粉末混合物(通过分裂弹)。与第一次实验不同,这确保了粉末不会被点燃或加热,因此收集到的颗粒的形态将完全取决于撞击。然后使用冷场发射枪扫描电子显微镜(FEG)和能量色散x射线(EDX)探测器对衬底上的残留物进行分析。通过将底漆的点火过程与残留物撞击分离,可以更仔细地观察这些颗粒的形成,并有助于确定它们的不同形态是由于底漆激活和燃烧过程中引起的加热还是由于撞击熔化。这些信息有助于了解不同压力环境下金属颗粒的形成,并深入了解枪支残留物撞击表面时的物理状态。Hydrocode模型也被用于证实这些实验中观察到的结果,并给出了模拟实验数据的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experiments using a light gas gun to investigate the impact melting of gunshot residue analogues
In this set of experiments, the versatility of the University of Kent's light gas gun was utilised to obtain a selection of corroborative data regarding the formation and impact of metallic gunshot residues onto high purity silicon wafers. The results from the two experiments are presented. The first experiment investigated how the formation of metallic residues varied as gunshot residue analogues traversed through air under a range of pressures from 0.056 millibar (5.6 Pa) to 1 bar (100 kPa), using solely the energy released during primer ignition; the second involved firing a metallic powder mix of pre-determined composition (via a split-sabot) under vacuum at two velocities- 500 ms-1 and 2000 ms-1. This ensured that there was no ignition or heating of the powders, unlike the first experiment, and so the morphology of the particles collected would be solely due to impact. The residues on the substrates were then analysed using a cold Field Emission Gun Scanning Electron Microscope (FEG) and Energy Dispersive X-ray (EDX) detector. By separating the ignition process of the primers from the residue impacts, it allows for a closer look into the formation of these particles and helps determine whether their varied morphologies are due to the heating caused during the activation and combustion of the primer or whether its due to impact melting. This information can aid in the understanding of metallic particle formation in different pressure environments and give insight into the physical state of firearm residues when they impact a surface. Hydrocode modelling was also incorporated to corroborate the results observed during these experiments and gave results which mimicked the experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1