{"title":"NF-κB抑制剂和肺动脉持续灌注对仔猪深低温低流量肺损伤的保护作用。","authors":"Yewei Xie, Rufang Zhang, Jia Li","doi":"10.4149/gpb_2022058","DOIUrl":null,"url":null,"abstract":"<p><p>Deep hypothermia with low flow perfusion (DHLF) is a common cardiopulmonary bypass (CPB) technique. The associated lung ischemia/reperfusion injury is a major cause of postoperative morbidity and mortality in patients undergoing DHLP; we aimed to investigate the effects of nuclear factor-κB (NF-κB) inhibitor pyrrolidine dithiocarbamate (PDTC) with continuous perfusion of pulmonary arteries (CPP) on DHLF-induced lung injury and the related molecular mechanisms. Twenty-four piglets were randomly divided into the DHLF (control), CPP (with DHLF), or CPP+PDTC (intravenous PDTC before CPP with DHLF) groups. Lung injury was evaluated by respiratory function measurement, lung immunohistochemistry, and serum levels of TNF, IL-8, IL-6, and NF-κB before CPB, at CPB completion, and at 1 h post-CPB. Western blot was used to detect NF-κB protein expression in lung tissues. After CPB, decreased parcial pressure of oxygen (PaO2) and increased parcial pressure of carbon dioxide (PaCO2) and serum levels of TNF, IL-8, IL-6, and NF-κB were observed in the DHLF group. Both CPP and CPP+PDTC groups showed better indices of lung function, decreased levels of TNF, IL-8, and IL-6, and less severe pulmonary edemas and injuries. PDTC with CPP further improved pulmonary function and mitigated pulmonary injury than did CPP alone. PDTC with CPP better attenuates DHLF-induced lung injury than does CPP alone.</p>","PeriodicalId":12514,"journal":{"name":"General physiology and biophysics","volume":"42 2","pages":"169-177"},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective effects of NF-κB inhibitor and continuous perfusion of pulmonary arteries on pulmonary injury in piglet models of deep hypothermia low flow.\",\"authors\":\"Yewei Xie, Rufang Zhang, Jia Li\",\"doi\":\"10.4149/gpb_2022058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep hypothermia with low flow perfusion (DHLF) is a common cardiopulmonary bypass (CPB) technique. The associated lung ischemia/reperfusion injury is a major cause of postoperative morbidity and mortality in patients undergoing DHLP; we aimed to investigate the effects of nuclear factor-κB (NF-κB) inhibitor pyrrolidine dithiocarbamate (PDTC) with continuous perfusion of pulmonary arteries (CPP) on DHLF-induced lung injury and the related molecular mechanisms. Twenty-four piglets were randomly divided into the DHLF (control), CPP (with DHLF), or CPP+PDTC (intravenous PDTC before CPP with DHLF) groups. Lung injury was evaluated by respiratory function measurement, lung immunohistochemistry, and serum levels of TNF, IL-8, IL-6, and NF-κB before CPB, at CPB completion, and at 1 h post-CPB. Western blot was used to detect NF-κB protein expression in lung tissues. After CPB, decreased parcial pressure of oxygen (PaO2) and increased parcial pressure of carbon dioxide (PaCO2) and serum levels of TNF, IL-8, IL-6, and NF-κB were observed in the DHLF group. Both CPP and CPP+PDTC groups showed better indices of lung function, decreased levels of TNF, IL-8, and IL-6, and less severe pulmonary edemas and injuries. PDTC with CPP further improved pulmonary function and mitigated pulmonary injury than did CPP alone. PDTC with CPP better attenuates DHLF-induced lung injury than does CPP alone.</p>\",\"PeriodicalId\":12514,\"journal\":{\"name\":\"General physiology and biophysics\",\"volume\":\"42 2\",\"pages\":\"169-177\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General physiology and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4149/gpb_2022058\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General physiology and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2022058","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Protective effects of NF-κB inhibitor and continuous perfusion of pulmonary arteries on pulmonary injury in piglet models of deep hypothermia low flow.
Deep hypothermia with low flow perfusion (DHLF) is a common cardiopulmonary bypass (CPB) technique. The associated lung ischemia/reperfusion injury is a major cause of postoperative morbidity and mortality in patients undergoing DHLP; we aimed to investigate the effects of nuclear factor-κB (NF-κB) inhibitor pyrrolidine dithiocarbamate (PDTC) with continuous perfusion of pulmonary arteries (CPP) on DHLF-induced lung injury and the related molecular mechanisms. Twenty-four piglets were randomly divided into the DHLF (control), CPP (with DHLF), or CPP+PDTC (intravenous PDTC before CPP with DHLF) groups. Lung injury was evaluated by respiratory function measurement, lung immunohistochemistry, and serum levels of TNF, IL-8, IL-6, and NF-κB before CPB, at CPB completion, and at 1 h post-CPB. Western blot was used to detect NF-κB protein expression in lung tissues. After CPB, decreased parcial pressure of oxygen (PaO2) and increased parcial pressure of carbon dioxide (PaCO2) and serum levels of TNF, IL-8, IL-6, and NF-κB were observed in the DHLF group. Both CPP and CPP+PDTC groups showed better indices of lung function, decreased levels of TNF, IL-8, and IL-6, and less severe pulmonary edemas and injuries. PDTC with CPP further improved pulmonary function and mitigated pulmonary injury than did CPP alone. PDTC with CPP better attenuates DHLF-induced lung injury than does CPP alone.
期刊介绍:
General Physiology and Biophysics is devoted to the publication of original research papers concerned with general physiology, biophysics and biochemistry at the cellular and molecular level and is published quarterly by the Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences.