通过注意力积累的视觉基础

Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu, Mingkui Tan
{"title":"通过注意力积累的视觉基础","authors":"Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu, Mingkui Tan","doi":"10.1109/CVPR.2018.00808","DOIUrl":null,"url":null,"abstract":"Visual Grounding (VG) aims to locate the most relevant object or region in an image, based on a natural language query. The query can be a phrase, a sentence or even a multi-round dialogue. There are three main challenges in VG: 1) what is the main focus in a query; 2) how to understand an image; 3) how to locate an object. Most existing methods combine all the information curtly, which may suffer from the problem of information redundancy (i.e. ambiguous query, complicated image and a large number of objects). In this paper, we formulate these challenges as three attention problems and propose an accumulated attention (A-ATT) mechanism to reason among them jointly. Our A-ATT mechanism can circularly accumulate the attention for useful information in image, query, and objects, while the noises are ignored gradually. We evaluate the performance of A-ATT on four popular datasets (namely Refer-COCO, ReferCOCO+, ReferCOCOg, and Guesswhat?!), and the experimental results show the superiority of the proposed method in term of accuracy.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"5 1","pages":"7746-7755"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"173","resultStr":"{\"title\":\"Visual Grounding via Accumulated Attention\",\"authors\":\"Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu, Mingkui Tan\",\"doi\":\"10.1109/CVPR.2018.00808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual Grounding (VG) aims to locate the most relevant object or region in an image, based on a natural language query. The query can be a phrase, a sentence or even a multi-round dialogue. There are three main challenges in VG: 1) what is the main focus in a query; 2) how to understand an image; 3) how to locate an object. Most existing methods combine all the information curtly, which may suffer from the problem of information redundancy (i.e. ambiguous query, complicated image and a large number of objects). In this paper, we formulate these challenges as three attention problems and propose an accumulated attention (A-ATT) mechanism to reason among them jointly. Our A-ATT mechanism can circularly accumulate the attention for useful information in image, query, and objects, while the noises are ignored gradually. We evaluate the performance of A-ATT on four popular datasets (namely Refer-COCO, ReferCOCO+, ReferCOCOg, and Guesswhat?!), and the experimental results show the superiority of the proposed method in term of accuracy.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"5 1\",\"pages\":\"7746-7755\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"173\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 173

摘要

基于自然语言查询的视觉定位(VG)旨在定位图像中最相关的对象或区域。查询可以是一个短语、一个句子,甚至是一个多轮对话。在VG中有三个主要的挑战:1)查询的主要焦点是什么;2)如何理解图像;3)如何定位目标。现有的方法大多是将所有信息简单地组合在一起,存在信息冗余的问题(如查询不明确、图像复杂、对象多)。在本文中,我们将这些挑战归纳为三个关注问题,并提出了一个累积关注(A-ATT)机制来共同对它们进行推理。我们的A-ATT机制可以循环地积累对图像、查询和对象中有用信息的关注,而逐渐忽略噪声。我们在四个流行的数据集(即ReferCOCO - coco、ReferCOCO+、ReferCOCO和Guesswhat?!)上评估了A-ATT的性能,实验结果表明了所提方法在准确率方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Grounding via Accumulated Attention
Visual Grounding (VG) aims to locate the most relevant object or region in an image, based on a natural language query. The query can be a phrase, a sentence or even a multi-round dialogue. There are three main challenges in VG: 1) what is the main focus in a query; 2) how to understand an image; 3) how to locate an object. Most existing methods combine all the information curtly, which may suffer from the problem of information redundancy (i.e. ambiguous query, complicated image and a large number of objects). In this paper, we formulate these challenges as three attention problems and propose an accumulated attention (A-ATT) mechanism to reason among them jointly. Our A-ATT mechanism can circularly accumulate the attention for useful information in image, query, and objects, while the noises are ignored gradually. We evaluate the performance of A-ATT on four popular datasets (namely Refer-COCO, ReferCOCO+, ReferCOCOg, and Guesswhat?!), and the experimental results show the superiority of the proposed method in term of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1