{"title":"采珠湾沉积物中铁形态的季节性变化Mössbauer光谱分析","authors":"A. Kuno, M. Matsuo, S. Chiba, Y. Yamagata","doi":"10.14494/jnrs.9.13","DOIUrl":null,"url":null,"abstract":"Ago Bay in Mie Prefecture, central Japan, is world-famous for the site of Mikimoto pearl culture, but recently the production of pearls has considerably declined. Environmental deterioration of the bay is suspected of having caused the decline. The periodic investigation into iron speciation of the bay sediment by 57 Fe Mossbauer spectroscopy revealed its high pyrite (FeS2) content from the surface to the 20-cm depth. The pyrite in the surface sediment decreased only in spring, three months after the dissolved oxygen in the bottom water was at maximum. Such oxygen-consuming material as pyrite accumulated through long-term biotic activity is a most-likely explanation for the prolonged environmental deterioration of the bay, which appears in the high chemical oxygen demand (COD) of the sediment.","PeriodicalId":16569,"journal":{"name":"Journal of nuclear and radiochemical sciences","volume":"13 1","pages":"13-18"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seasonal Variation of Iron Speciation in a Pearl-Raising Bay Sediment by Mössbauer Spectroscopy\",\"authors\":\"A. Kuno, M. Matsuo, S. Chiba, Y. Yamagata\",\"doi\":\"10.14494/jnrs.9.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ago Bay in Mie Prefecture, central Japan, is world-famous for the site of Mikimoto pearl culture, but recently the production of pearls has considerably declined. Environmental deterioration of the bay is suspected of having caused the decline. The periodic investigation into iron speciation of the bay sediment by 57 Fe Mossbauer spectroscopy revealed its high pyrite (FeS2) content from the surface to the 20-cm depth. The pyrite in the surface sediment decreased only in spring, three months after the dissolved oxygen in the bottom water was at maximum. Such oxygen-consuming material as pyrite accumulated through long-term biotic activity is a most-likely explanation for the prolonged environmental deterioration of the bay, which appears in the high chemical oxygen demand (COD) of the sediment.\",\"PeriodicalId\":16569,\"journal\":{\"name\":\"Journal of nuclear and radiochemical sciences\",\"volume\":\"13 1\",\"pages\":\"13-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nuclear and radiochemical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14494/jnrs.9.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nuclear and radiochemical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14494/jnrs.9.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seasonal Variation of Iron Speciation in a Pearl-Raising Bay Sediment by Mössbauer Spectroscopy
Ago Bay in Mie Prefecture, central Japan, is world-famous for the site of Mikimoto pearl culture, but recently the production of pearls has considerably declined. Environmental deterioration of the bay is suspected of having caused the decline. The periodic investigation into iron speciation of the bay sediment by 57 Fe Mossbauer spectroscopy revealed its high pyrite (FeS2) content from the surface to the 20-cm depth. The pyrite in the surface sediment decreased only in spring, three months after the dissolved oxygen in the bottom water was at maximum. Such oxygen-consuming material as pyrite accumulated through long-term biotic activity is a most-likely explanation for the prolonged environmental deterioration of the bay, which appears in the high chemical oxygen demand (COD) of the sediment.