{"title":"通过点击数据过滤不良内容","authors":"Lung-Hao Lee, Yen-Cheng Juan, Hsin-Hsi Chen, Yuen-Hsien Tseng","doi":"10.1145/2505515.2507849","DOIUrl":null,"url":null,"abstract":"This paper explores users' browsing intents to predict the category of a user's next access during web surfing, and applies the results to objectionable content filtering. A user's access trail represented as a sequence of URLs reveals the contextual information of web browsing behaviors. We extract behavioral features of each clicked URL, i.e., hostname, bag-of-words, gTLD, IP, and port, to develop a linear chain CRF model for context-aware category prediction. Large-scale experiments show that our method achieves a promising accuracy of 0.9396 for objectionable access identification without requesting their corresponding page content. Error analysis indicates that our proposed model results in a low false positive rate of 0.0571. In real-life filtering simulations, our proposed model accomplishes macro-averaging blocking rate 0.9271, while maintaining a favorably low macro-averaging over-blocking rate 0.0575 for collaboratively filtering objectionable content with time change on the dynamic web.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"62 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Objectionable content filtering by click-through data\",\"authors\":\"Lung-Hao Lee, Yen-Cheng Juan, Hsin-Hsi Chen, Yuen-Hsien Tseng\",\"doi\":\"10.1145/2505515.2507849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores users' browsing intents to predict the category of a user's next access during web surfing, and applies the results to objectionable content filtering. A user's access trail represented as a sequence of URLs reveals the contextual information of web browsing behaviors. We extract behavioral features of each clicked URL, i.e., hostname, bag-of-words, gTLD, IP, and port, to develop a linear chain CRF model for context-aware category prediction. Large-scale experiments show that our method achieves a promising accuracy of 0.9396 for objectionable access identification without requesting their corresponding page content. Error analysis indicates that our proposed model results in a low false positive rate of 0.0571. In real-life filtering simulations, our proposed model accomplishes macro-averaging blocking rate 0.9271, while maintaining a favorably low macro-averaging over-blocking rate 0.0575 for collaboratively filtering objectionable content with time change on the dynamic web.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"62 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2507849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Objectionable content filtering by click-through data
This paper explores users' browsing intents to predict the category of a user's next access during web surfing, and applies the results to objectionable content filtering. A user's access trail represented as a sequence of URLs reveals the contextual information of web browsing behaviors. We extract behavioral features of each clicked URL, i.e., hostname, bag-of-words, gTLD, IP, and port, to develop a linear chain CRF model for context-aware category prediction. Large-scale experiments show that our method achieves a promising accuracy of 0.9396 for objectionable access identification without requesting their corresponding page content. Error analysis indicates that our proposed model results in a low false positive rate of 0.0571. In real-life filtering simulations, our proposed model accomplishes macro-averaging blocking rate 0.9271, while maintaining a favorably low macro-averaging over-blocking rate 0.0575 for collaboratively filtering objectionable content with time change on the dynamic web.