{"title":"沙特儿童TMEM106B的新生突变导致髓鞘性白质营养不良。","authors":"Lena Alotaibi, Amal Alqasmi","doi":"10.1055/s-0043-1764370","DOIUrl":null,"url":null,"abstract":"<p><p>Hypomyelinating leukodystrophies are one of the white matter disorders caused by a lack of myelin deposition in the central nervous system (CNS). Here, we report the first case of hypomyelinating leukodystrophy in the Middle East and Saudi Arabia. This condition is caused by a mutation in the TMEM106B gene (HLD16; MIM 617964). Hypotonia, congenital nystagmus, delayed motor development, and delayed speech are the main clinical manifestations. The affected patient has mild pyramidal syndrome, a mild intellectual disability, ataxic gait, hyperreflexia, intention tremor, dysmetria, and other motor difficulties. Findings from neuroimaging reveal severe, ongoing, and diffuse hypomyelination identified via the whole exome sequencing, a harmful missense mutation in the TMEM106B gene that is heterozygous. The patient is the offspring of two unrelated persons. The protein's cytoplasmic domain contains a variation that is located in highly conserved residues. In an oligodendroglial cell line, the mutant protein significantly lowered the mRNA production of important myelin genes, decreased branching, and increased cell mortality. TMEM106B is abundantly expressed in neurons and oligodendrocytes in the CNS and is localized in the late endosome and lysosome compartments. TMEM106B levels can be controlled at the transcriptional level through chromatin modification, at the mRNA level through miRNAs, and at the protein level through lysosomal functions. Our findings reveal a novel role of zinc homeostasis in oligodendrocyte development and myelin production and show that variations in TMEM163 induce hypomyelination leukodystrophy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027483/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of a de novo Mutation in TMEM106B in a Saudi Child Causes Hypomyelination Leukodystrophy.\",\"authors\":\"Lena Alotaibi, Amal Alqasmi\",\"doi\":\"10.1055/s-0043-1764370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypomyelinating leukodystrophies are one of the white matter disorders caused by a lack of myelin deposition in the central nervous system (CNS). Here, we report the first case of hypomyelinating leukodystrophy in the Middle East and Saudi Arabia. This condition is caused by a mutation in the TMEM106B gene (HLD16; MIM 617964). Hypotonia, congenital nystagmus, delayed motor development, and delayed speech are the main clinical manifestations. The affected patient has mild pyramidal syndrome, a mild intellectual disability, ataxic gait, hyperreflexia, intention tremor, dysmetria, and other motor difficulties. Findings from neuroimaging reveal severe, ongoing, and diffuse hypomyelination identified via the whole exome sequencing, a harmful missense mutation in the TMEM106B gene that is heterozygous. The patient is the offspring of two unrelated persons. The protein's cytoplasmic domain contains a variation that is located in highly conserved residues. In an oligodendroglial cell line, the mutant protein significantly lowered the mRNA production of important myelin genes, decreased branching, and increased cell mortality. TMEM106B is abundantly expressed in neurons and oligodendrocytes in the CNS and is localized in the late endosome and lysosome compartments. TMEM106B levels can be controlled at the transcriptional level through chromatin modification, at the mRNA level through miRNAs, and at the protein level through lysosomal functions. Our findings reveal a novel role of zinc homeostasis in oligodendrocyte development and myelin production and show that variations in TMEM163 induce hypomyelination leukodystrophy.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0043-1764370\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0043-1764370","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of a de novo Mutation in TMEM106B in a Saudi Child Causes Hypomyelination Leukodystrophy.
Hypomyelinating leukodystrophies are one of the white matter disorders caused by a lack of myelin deposition in the central nervous system (CNS). Here, we report the first case of hypomyelinating leukodystrophy in the Middle East and Saudi Arabia. This condition is caused by a mutation in the TMEM106B gene (HLD16; MIM 617964). Hypotonia, congenital nystagmus, delayed motor development, and delayed speech are the main clinical manifestations. The affected patient has mild pyramidal syndrome, a mild intellectual disability, ataxic gait, hyperreflexia, intention tremor, dysmetria, and other motor difficulties. Findings from neuroimaging reveal severe, ongoing, and diffuse hypomyelination identified via the whole exome sequencing, a harmful missense mutation in the TMEM106B gene that is heterozygous. The patient is the offspring of two unrelated persons. The protein's cytoplasmic domain contains a variation that is located in highly conserved residues. In an oligodendroglial cell line, the mutant protein significantly lowered the mRNA production of important myelin genes, decreased branching, and increased cell mortality. TMEM106B is abundantly expressed in neurons and oligodendrocytes in the CNS and is localized in the late endosome and lysosome compartments. TMEM106B levels can be controlled at the transcriptional level through chromatin modification, at the mRNA level through miRNAs, and at the protein level through lysosomal functions. Our findings reveal a novel role of zinc homeostasis in oligodendrocyte development and myelin production and show that variations in TMEM163 induce hypomyelination leukodystrophy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.