Gal Porat-Dahlerbruch , Jochem Struppe , Caitlin M. Quinn , Angela M. Gronenborn , Tatyana Polenova
{"title":"有机分子和药物制剂的19F快速MAS (60-111 kHz)偶极和标量相关光谱","authors":"Gal Porat-Dahlerbruch , Jochem Struppe , Caitlin M. Quinn , Angela M. Gronenborn , Tatyana Polenova","doi":"10.1016/j.ssnmr.2022.101831","DOIUrl":null,"url":null,"abstract":"<div><p><sup>19</sup><span>F magic angle spinning (MAS) NMR spectroscopy is a powerful tool for characterization of fluorinated solids. The recent development of </span><sup>19</sup><span>F MAS NMR probes, operating at spinning frequencies of 60–111 kHz, enabled analysis of systems spanning from organic molecules to pharmaceutical formulations to biological assemblies, with unprecedented resolution. Herein, we systematically evaluate the benefits of high MAS frequencies (60–111 kHz) for 1D and 2D </span><sup>19</sup><span>F-detected experiments in two pharmaceuticals, the antimalarial drug<span> mefloquine<span> and a formulation of the cholesterol-lowering drug atorvastatin calcium. We demonstrate that </span></span></span><sup>1</sup><span><span>H decoupling is essential and that scalar-based, heteronuclear single quantum coherence (HSQC) and </span>heteronuclear multiple quantum coherence (HMQC) correlation experiments become feasible and efficient at the MAS frequency of 100 kHz. This study opens doors for the applications of high frequency </span><sup>19</sup><span>F MAS NMR to a wide range of problems in chemistry and biology.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101831"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"19F fast MAS (60–111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules and pharmaceutical formulations\",\"authors\":\"Gal Porat-Dahlerbruch , Jochem Struppe , Caitlin M. Quinn , Angela M. Gronenborn , Tatyana Polenova\",\"doi\":\"10.1016/j.ssnmr.2022.101831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><sup>19</sup><span>F magic angle spinning (MAS) NMR spectroscopy is a powerful tool for characterization of fluorinated solids. The recent development of </span><sup>19</sup><span>F MAS NMR probes, operating at spinning frequencies of 60–111 kHz, enabled analysis of systems spanning from organic molecules to pharmaceutical formulations to biological assemblies, with unprecedented resolution. Herein, we systematically evaluate the benefits of high MAS frequencies (60–111 kHz) for 1D and 2D </span><sup>19</sup><span>F-detected experiments in two pharmaceuticals, the antimalarial drug<span> mefloquine<span> and a formulation of the cholesterol-lowering drug atorvastatin calcium. We demonstrate that </span></span></span><sup>1</sup><span><span>H decoupling is essential and that scalar-based, heteronuclear single quantum coherence (HSQC) and </span>heteronuclear multiple quantum coherence (HMQC) correlation experiments become feasible and efficient at the MAS frequency of 100 kHz. This study opens doors for the applications of high frequency </span><sup>19</sup><span>F MAS NMR to a wide range of problems in chemistry and biology.</span></p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"122 \",\"pages\":\"Article 101831\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204022000601\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204022000601","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
19F fast MAS (60–111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules and pharmaceutical formulations
19F magic angle spinning (MAS) NMR spectroscopy is a powerful tool for characterization of fluorinated solids. The recent development of 19F MAS NMR probes, operating at spinning frequencies of 60–111 kHz, enabled analysis of systems spanning from organic molecules to pharmaceutical formulations to biological assemblies, with unprecedented resolution. Herein, we systematically evaluate the benefits of high MAS frequencies (60–111 kHz) for 1D and 2D 19F-detected experiments in two pharmaceuticals, the antimalarial drug mefloquine and a formulation of the cholesterol-lowering drug atorvastatin calcium. We demonstrate that 1H decoupling is essential and that scalar-based, heteronuclear single quantum coherence (HSQC) and heteronuclear multiple quantum coherence (HMQC) correlation experiments become feasible and efficient at the MAS frequency of 100 kHz. This study opens doors for the applications of high frequency 19F MAS NMR to a wide range of problems in chemistry and biology.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.