Yin Cheng-Ming , Li Ning-Qiu , Ren Li-Chao , Wang Zhe , Chai Lian-Qin , Lan Jiang-Feng
{"title":"克氏原螯虾(proambarus clarkii)两种高度同源的溶菌酶的鉴定与表征","authors":"Yin Cheng-Ming , Li Ning-Qiu , Ren Li-Chao , Wang Zhe , Chai Lian-Qin , Lan Jiang-Feng","doi":"10.1016/j.fsirep.2021.100017","DOIUrl":null,"url":null,"abstract":"<div><p>Lysozyme is an important immune effector in innate immunity against pathogen infection. But the study on the active region of lysozyme is limited. In this study, two highly homologous lysozymes were identified from crayfish (designated as PcLysi4 and PcLysi5). The molecular structures of PcLysi4 and PcLysi5 were predicted by SWISS-MODEL with the structure of lysozyme (PDB accession No. 4PJ2.2.B) as model. The results suggested that the structure of PcLysi4 and PcLysi5 were highly similar, but there were more α-helices at positions (127–139) and longer β-sheet at positions (49–57) in the structure of PcLysi5 than in that of PcLysi4. The antibacterial and antiviral functions of the two lysozymes were investigated. PcLysi4 and PcLysi5 could promote the bacterial clearance ability of crayfish, and increase the survival rate of <em>Vibrio</em>-infected crayfish. Further study showed that PcLysi5 inhibited WSSV replication, and enhanced the survival rate of WSSV-infected crayfish. There was no evidence that PcLysi4 has an influence on WSSV replication. Furthermore, PcLysi5 was detected to interact with envelope protein VP24 of WSSV. Our results would provide a new reference for the study on active region of lysozyme.</p></div>","PeriodicalId":73029,"journal":{"name":"Fish and shellfish immunology reports","volume":"2 ","pages":"Article 100017"},"PeriodicalIF":2.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fsirep.2021.100017","citationCount":"1","resultStr":"{\"title\":\"Identification and characterization of two highly homologous lysozymes from red swamp crayfish, Procambarus clarkii\",\"authors\":\"Yin Cheng-Ming , Li Ning-Qiu , Ren Li-Chao , Wang Zhe , Chai Lian-Qin , Lan Jiang-Feng\",\"doi\":\"10.1016/j.fsirep.2021.100017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lysozyme is an important immune effector in innate immunity against pathogen infection. But the study on the active region of lysozyme is limited. In this study, two highly homologous lysozymes were identified from crayfish (designated as PcLysi4 and PcLysi5). The molecular structures of PcLysi4 and PcLysi5 were predicted by SWISS-MODEL with the structure of lysozyme (PDB accession No. 4PJ2.2.B) as model. The results suggested that the structure of PcLysi4 and PcLysi5 were highly similar, but there were more α-helices at positions (127–139) and longer β-sheet at positions (49–57) in the structure of PcLysi5 than in that of PcLysi4. The antibacterial and antiviral functions of the two lysozymes were investigated. PcLysi4 and PcLysi5 could promote the bacterial clearance ability of crayfish, and increase the survival rate of <em>Vibrio</em>-infected crayfish. Further study showed that PcLysi5 inhibited WSSV replication, and enhanced the survival rate of WSSV-infected crayfish. There was no evidence that PcLysi4 has an influence on WSSV replication. Furthermore, PcLysi5 was detected to interact with envelope protein VP24 of WSSV. Our results would provide a new reference for the study on active region of lysozyme.</p></div>\",\"PeriodicalId\":73029,\"journal\":{\"name\":\"Fish and shellfish immunology reports\",\"volume\":\"2 \",\"pages\":\"Article 100017\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.fsirep.2021.100017\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and shellfish immunology reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667011921000128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and shellfish immunology reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667011921000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Identification and characterization of two highly homologous lysozymes from red swamp crayfish, Procambarus clarkii
Lysozyme is an important immune effector in innate immunity against pathogen infection. But the study on the active region of lysozyme is limited. In this study, two highly homologous lysozymes were identified from crayfish (designated as PcLysi4 and PcLysi5). The molecular structures of PcLysi4 and PcLysi5 were predicted by SWISS-MODEL with the structure of lysozyme (PDB accession No. 4PJ2.2.B) as model. The results suggested that the structure of PcLysi4 and PcLysi5 were highly similar, but there were more α-helices at positions (127–139) and longer β-sheet at positions (49–57) in the structure of PcLysi5 than in that of PcLysi4. The antibacterial and antiviral functions of the two lysozymes were investigated. PcLysi4 and PcLysi5 could promote the bacterial clearance ability of crayfish, and increase the survival rate of Vibrio-infected crayfish. Further study showed that PcLysi5 inhibited WSSV replication, and enhanced the survival rate of WSSV-infected crayfish. There was no evidence that PcLysi4 has an influence on WSSV replication. Furthermore, PcLysi5 was detected to interact with envelope protein VP24 of WSSV. Our results would provide a new reference for the study on active region of lysozyme.