{"title":"分光光度法定量测定药物纯制剂和片剂中胡萝卜碱的研究与应用","authors":"Asad Raza, Tariq Mahmood Ansari","doi":"10.1016/j.ancr.2015.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes two simple and novel analytical methods by using spectrophotometric technique for the determination of caroverine a spasmolytic drug in pharmaceutical formulations. The first (A) is a direct method in which analysis of the pure drug was carried out at its <em>λ</em><sub>max</sub> 304<!--> <!-->nm in ethanol solvent. The method was linear from 0.5 to 18<!--> <!-->μg/ml with correlation coefficient of 0.999 and molar absorptivity of 5.55<!--> <!-->×<!--> <!-->10<sup>4</sup> <!-->L<!--> <!-->mole<sup>−1</sup> <!-->cm<sup>−1</sup>. Limit of detection and limit of quantification were 0.44 and 1.47<!--> <!-->μg/ml. While the second method (B) is based on the charge transfer reaction between caroverine as n-electron donor and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as pi-acceptor resulting in highly colored stable complex, which showed maximum absorption band at wavelength of 525<!--> <!-->nm. The thermodynamic parameters were calculated as association constant <em>K</em><sub>CT</sub> of 7.53<!--> <!-->×<!--> <!-->10<sup>4</sup> <!-->mol<sup>−1</sup> and Gibbs free energy Δ<em>G</em>° of −6.72<!--> <!-->kJ<!--> <!-->mol<sup>−1</sup>. Different variables affecting the charge transfer reaction were carefully studied and optimized. At the optimum reaction conditions, Beer’s law was obeyed in a concentration range of 1–35<!--> <!-->μg<!--> <!-->ml<sup>−1</sup> with molar absorptivity of 1.17<!--> <!-->×<!--> <!-->10<sup>4</sup> <!-->L<!--> <!-->mole<sup>−1</sup> <!-->cm<sup>−1</sup> and correlation coefficient of 0.9999. The proposed methods were validated according to ICH guidelines.</p></div>","PeriodicalId":7819,"journal":{"name":"Analytical Chemistry Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ancr.2015.03.004","citationCount":"3","resultStr":"{\"title\":\"Development and applications of spectrophotometric methods for quantitative determination of caroverine in pharmaceutical pure and tablet formulations\",\"authors\":\"Asad Raza, Tariq Mahmood Ansari\",\"doi\":\"10.1016/j.ancr.2015.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper describes two simple and novel analytical methods by using spectrophotometric technique for the determination of caroverine a spasmolytic drug in pharmaceutical formulations. The first (A) is a direct method in which analysis of the pure drug was carried out at its <em>λ</em><sub>max</sub> 304<!--> <!-->nm in ethanol solvent. The method was linear from 0.5 to 18<!--> <!-->μg/ml with correlation coefficient of 0.999 and molar absorptivity of 5.55<!--> <!-->×<!--> <!-->10<sup>4</sup> <!-->L<!--> <!-->mole<sup>−1</sup> <!-->cm<sup>−1</sup>. Limit of detection and limit of quantification were 0.44 and 1.47<!--> <!-->μg/ml. While the second method (B) is based on the charge transfer reaction between caroverine as n-electron donor and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as pi-acceptor resulting in highly colored stable complex, which showed maximum absorption band at wavelength of 525<!--> <!-->nm. The thermodynamic parameters were calculated as association constant <em>K</em><sub>CT</sub> of 7.53<!--> <!-->×<!--> <!-->10<sup>4</sup> <!-->mol<sup>−1</sup> and Gibbs free energy Δ<em>G</em>° of −6.72<!--> <!-->kJ<!--> <!-->mol<sup>−1</sup>. Different variables affecting the charge transfer reaction were carefully studied and optimized. At the optimum reaction conditions, Beer’s law was obeyed in a concentration range of 1–35<!--> <!-->μg<!--> <!-->ml<sup>−1</sup> with molar absorptivity of 1.17<!--> <!-->×<!--> <!-->10<sup>4</sup> <!-->L<!--> <!-->mole<sup>−1</sup> <!-->cm<sup>−1</sup> and correlation coefficient of 0.9999. The proposed methods were validated according to ICH guidelines.</p></div>\",\"PeriodicalId\":7819,\"journal\":{\"name\":\"Analytical Chemistry Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ancr.2015.03.004\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214181215000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214181215000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and applications of spectrophotometric methods for quantitative determination of caroverine in pharmaceutical pure and tablet formulations
This paper describes two simple and novel analytical methods by using spectrophotometric technique for the determination of caroverine a spasmolytic drug in pharmaceutical formulations. The first (A) is a direct method in which analysis of the pure drug was carried out at its λmax 304 nm in ethanol solvent. The method was linear from 0.5 to 18 μg/ml with correlation coefficient of 0.999 and molar absorptivity of 5.55 × 104 L mole−1 cm−1. Limit of detection and limit of quantification were 0.44 and 1.47 μg/ml. While the second method (B) is based on the charge transfer reaction between caroverine as n-electron donor and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as pi-acceptor resulting in highly colored stable complex, which showed maximum absorption band at wavelength of 525 nm. The thermodynamic parameters were calculated as association constant KCT of 7.53 × 104 mol−1 and Gibbs free energy ΔG° of −6.72 kJ mol−1. Different variables affecting the charge transfer reaction were carefully studied and optimized. At the optimum reaction conditions, Beer’s law was obeyed in a concentration range of 1–35 μg ml−1 with molar absorptivity of 1.17 × 104 L mole−1 cm−1 and correlation coefficient of 0.9999. The proposed methods were validated according to ICH guidelines.