{"title":"溶质拖曳处理中合金元素对钢中原共析铁素体转变速率的影响","authors":"G.R. Purdy , Y.J.M. Brechet","doi":"10.1016/0956-7151(95)90160-4","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of diffusional growth of a proeutectoid constituent in a ternary steel is considered, taking into account the interfacial diffusion of a slow-diffusing substitutional solute, under conditions which do not permit its long-range redistribution between parent and daughter phases. It is assumed that the faster diffusing interstitial solute (carbon) controls the rate of the transformation. The substitutional solute profile within (across) the interface is estimated as a function of interface velocity; the interstitial chemical potential difference is allowed to vary with, and balance, the solute drag due to the substitutional component. A transition to paraequilibrium is found at high interface velocities, and a variety of behaviour is predicted for intermediate states, depending on the relative rates of diffusion of the two solutes and their energetic interactions with each other and with the interphase boundary.</p></div>","PeriodicalId":100018,"journal":{"name":"Acta Metallurgica et Materialia","volume":"43 10","pages":"Pages 3763-3774"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-7151(95)90160-4","citationCount":"135","resultStr":"{\"title\":\"A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels\",\"authors\":\"G.R. Purdy , Y.J.M. Brechet\",\"doi\":\"10.1016/0956-7151(95)90160-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The problem of diffusional growth of a proeutectoid constituent in a ternary steel is considered, taking into account the interfacial diffusion of a slow-diffusing substitutional solute, under conditions which do not permit its long-range redistribution between parent and daughter phases. It is assumed that the faster diffusing interstitial solute (carbon) controls the rate of the transformation. The substitutional solute profile within (across) the interface is estimated as a function of interface velocity; the interstitial chemical potential difference is allowed to vary with, and balance, the solute drag due to the substitutional component. A transition to paraequilibrium is found at high interface velocities, and a variety of behaviour is predicted for intermediate states, depending on the relative rates of diffusion of the two solutes and their energetic interactions with each other and with the interphase boundary.</p></div>\",\"PeriodicalId\":100018,\"journal\":{\"name\":\"Acta Metallurgica et Materialia\",\"volume\":\"43 10\",\"pages\":\"Pages 3763-3774\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0956-7151(95)90160-4\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica et Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0956715195901604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica et Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0956715195901604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels
The problem of diffusional growth of a proeutectoid constituent in a ternary steel is considered, taking into account the interfacial diffusion of a slow-diffusing substitutional solute, under conditions which do not permit its long-range redistribution between parent and daughter phases. It is assumed that the faster diffusing interstitial solute (carbon) controls the rate of the transformation. The substitutional solute profile within (across) the interface is estimated as a function of interface velocity; the interstitial chemical potential difference is allowed to vary with, and balance, the solute drag due to the substitutional component. A transition to paraequilibrium is found at high interface velocities, and a variety of behaviour is predicted for intermediate states, depending on the relative rates of diffusion of the two solutes and their energetic interactions with each other and with the interphase boundary.