Malik Muhammad Irfan, Shefaat Ullah Shah, Kifayat Ullah Shah, Nicolas Anton, Idoux-Gillet Ysia, Guillaume Conzatti, Kifayat Ullah Shah, Perennes Elise, Thierry Vandamme
{"title":"配方设计和冻干对非那雄胺纳米系统理化特性的影响。","authors":"Malik Muhammad Irfan, Shefaat Ullah Shah, Kifayat Ullah Shah, Nicolas Anton, Idoux-Gillet Ysia, Guillaume Conzatti, Kifayat Ullah Shah, Perennes Elise, Thierry Vandamme","doi":"10.1080/02652048.2023.2178537","DOIUrl":null,"url":null,"abstract":"<p><p>The fundamental purpose of this study was to develop a stable lyophilised finasteride nanosystem (FNS-NS) for topical delivery. The FNS-NS was fabricated using an ultrasonication technique. The impact of two different cryoprotectants on the physicochemical characteristics of FNS-NS before and after lyophilisation was thoroughly investigated. The lyophilised FNS-NS had spherical shape with particle size lied between 188.6 nm ± 4.4 and 298.7 nm ± 4.7, low PDI values (0.26 ± 0.02 to 0.32 ± 0.02) and zeta potential ranging from -38.3 to +53.3 mV. The confocal laser microscopy depicted a comparatively higher cellular internalisation achieved for undecorated FNS-NS with respect to its chitosan-decorated counterpart. The lyophilised FNS-NS was stable for 90 days at proper storage conditions. The FNS-NS with 15% trehalose had appropriate physicochemical attributes that could be a promising carrier for topical delivery to treat androgenic alopecia.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 2","pages":"106-123"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of formulation design and lyophilisation on the physicochemical characteristics of finasteride nanosystems.\",\"authors\":\"Malik Muhammad Irfan, Shefaat Ullah Shah, Kifayat Ullah Shah, Nicolas Anton, Idoux-Gillet Ysia, Guillaume Conzatti, Kifayat Ullah Shah, Perennes Elise, Thierry Vandamme\",\"doi\":\"10.1080/02652048.2023.2178537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fundamental purpose of this study was to develop a stable lyophilised finasteride nanosystem (FNS-NS) for topical delivery. The FNS-NS was fabricated using an ultrasonication technique. The impact of two different cryoprotectants on the physicochemical characteristics of FNS-NS before and after lyophilisation was thoroughly investigated. The lyophilised FNS-NS had spherical shape with particle size lied between 188.6 nm ± 4.4 and 298.7 nm ± 4.7, low PDI values (0.26 ± 0.02 to 0.32 ± 0.02) and zeta potential ranging from -38.3 to +53.3 mV. The confocal laser microscopy depicted a comparatively higher cellular internalisation achieved for undecorated FNS-NS with respect to its chitosan-decorated counterpart. The lyophilised FNS-NS was stable for 90 days at proper storage conditions. The FNS-NS with 15% trehalose had appropriate physicochemical attributes that could be a promising carrier for topical delivery to treat androgenic alopecia.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\"40 2\",\"pages\":\"106-123\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2023.2178537\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2178537","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Impact of formulation design and lyophilisation on the physicochemical characteristics of finasteride nanosystems.
The fundamental purpose of this study was to develop a stable lyophilised finasteride nanosystem (FNS-NS) for topical delivery. The FNS-NS was fabricated using an ultrasonication technique. The impact of two different cryoprotectants on the physicochemical characteristics of FNS-NS before and after lyophilisation was thoroughly investigated. The lyophilised FNS-NS had spherical shape with particle size lied between 188.6 nm ± 4.4 and 298.7 nm ± 4.7, low PDI values (0.26 ± 0.02 to 0.32 ± 0.02) and zeta potential ranging from -38.3 to +53.3 mV. The confocal laser microscopy depicted a comparatively higher cellular internalisation achieved for undecorated FNS-NS with respect to its chitosan-decorated counterpart. The lyophilised FNS-NS was stable for 90 days at proper storage conditions. The FNS-NS with 15% trehalose had appropriate physicochemical attributes that could be a promising carrier for topical delivery to treat androgenic alopecia.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.