George Delidakis, Jin Eyun Kim, Katia George, George Georgiou
{"title":"通过控制Fc结构域改善抗体治疗:免疫学和结构考虑。","authors":"George Delidakis, Jin Eyun Kim, Katia George, George Georgiou","doi":"10.1146/annurev-bioeng-082721-024500","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between the crystallizable fragment (Fc) domain of antibodies and a plethora of cellular Fc receptors (FcRs) or soluble proteins form a critical link between humoral and innate immunity. In particular, the immunoglobulin G Fc domain is critical for the clearance of target cells by processes that include (<i>a</i>) cytotoxicity, phagocytosis, or complement lysis; (<i>b</i>) modulation of inflammation; (<i>c</i>) antigen presentation; (<i>d</i>) antibody-mediated receptor clustering; and (<i>e</i>) cytokine release. More than 30 Fc-engineered antibodies aimed primarily at tailoring these effects for optimal therapeutic outcomes are in clinical evaluation or have already been approved. Nonetheless, our understanding of how FcR engagement impacts various immune cell phenotypes is still largely incomplete. Recent insights into FcR biology coupled with advances in Fc:FcR structural analysis, Fc engineering, and mouse models that recapitulate human biology are helping to fill in existing knowledge gaps. These advances will provide a blueprint on how to fine-tune the Fc domain to achieve optimal therapeutic efficacy.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"24 ","pages":"249-274"},"PeriodicalIF":12.8000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648538/pdf/nihms-1844455.pdf","citationCount":"12","resultStr":"{\"title\":\"Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations.\",\"authors\":\"George Delidakis, Jin Eyun Kim, Katia George, George Georgiou\",\"doi\":\"10.1146/annurev-bioeng-082721-024500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interactions between the crystallizable fragment (Fc) domain of antibodies and a plethora of cellular Fc receptors (FcRs) or soluble proteins form a critical link between humoral and innate immunity. In particular, the immunoglobulin G Fc domain is critical for the clearance of target cells by processes that include (<i>a</i>) cytotoxicity, phagocytosis, or complement lysis; (<i>b</i>) modulation of inflammation; (<i>c</i>) antigen presentation; (<i>d</i>) antibody-mediated receptor clustering; and (<i>e</i>) cytokine release. More than 30 Fc-engineered antibodies aimed primarily at tailoring these effects for optimal therapeutic outcomes are in clinical evaluation or have already been approved. Nonetheless, our understanding of how FcR engagement impacts various immune cell phenotypes is still largely incomplete. Recent insights into FcR biology coupled with advances in Fc:FcR structural analysis, Fc engineering, and mouse models that recapitulate human biology are helping to fill in existing knowledge gaps. These advances will provide a blueprint on how to fine-tune the Fc domain to achieve optimal therapeutic efficacy.</p>\",\"PeriodicalId\":50757,\"journal\":{\"name\":\"Annual Review of Biomedical Engineering\",\"volume\":\"24 \",\"pages\":\"249-274\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648538/pdf/nihms-1844455.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-bioeng-082721-024500\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-082721-024500","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations.
Interactions between the crystallizable fragment (Fc) domain of antibodies and a plethora of cellular Fc receptors (FcRs) or soluble proteins form a critical link between humoral and innate immunity. In particular, the immunoglobulin G Fc domain is critical for the clearance of target cells by processes that include (a) cytotoxicity, phagocytosis, or complement lysis; (b) modulation of inflammation; (c) antigen presentation; (d) antibody-mediated receptor clustering; and (e) cytokine release. More than 30 Fc-engineered antibodies aimed primarily at tailoring these effects for optimal therapeutic outcomes are in clinical evaluation or have already been approved. Nonetheless, our understanding of how FcR engagement impacts various immune cell phenotypes is still largely incomplete. Recent insights into FcR biology coupled with advances in Fc:FcR structural analysis, Fc engineering, and mouse models that recapitulate human biology are helping to fill in existing knowledge gaps. These advances will provide a blueprint on how to fine-tune the Fc domain to achieve optimal therapeutic efficacy.
期刊介绍:
Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.