Daniel Risskov Sørensen, Andreas Østergaard Drejer, Michael Heere, Anatoliy Senyshyn, Matthias Frontzek, Thomas Hansen, Christophe Didier, Vanessa K. Peterson, Dorthe Bomholdt Ravnsbæk, Mads Ry Vogel Jørgensen
{"title":"用于可充电电池中子粉末衍射研究的易于使用的定制电池","authors":"Daniel Risskov Sørensen, Andreas Østergaard Drejer, Michael Heere, Anatoliy Senyshyn, Matthias Frontzek, Thomas Hansen, Christophe Didier, Vanessa K. Peterson, Dorthe Bomholdt Ravnsbæk, Mads Ry Vogel Jørgensen","doi":"10.1002/cmtd.202200055","DOIUrl":null,"url":null,"abstract":"<p>Invited for this month's cover is the group of Daniel R. Sørensen at the University of Aarhus (Denmark) and at the University of Lund (Sweden). The cover picture shows a battery cell designed for in operando neutron powder diffraction. The picture seeks to illustrate the experiment process where lithium ions are moving into the crystal structure of the battery cathode during discharge. This leads to changes in the crystal structure that are very important to understand for optimizing the battery materials. These structural changes are probed in operando by neutron powder diffraction, and neutrons are especially suited for probing the location of Li-ion compared with similar techniques such as X-ray diffraction. The beauty of using neutrons is also that their penetrating power allows for investigating the battery without the need for windows of any kind. Read the full text of their Research Article at 10.1002/cmtd.202200046.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200055","citationCount":"0","resultStr":"{\"title\":\"An Easy-to-Use Custom-Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteries\",\"authors\":\"Daniel Risskov Sørensen, Andreas Østergaard Drejer, Michael Heere, Anatoliy Senyshyn, Matthias Frontzek, Thomas Hansen, Christophe Didier, Vanessa K. Peterson, Dorthe Bomholdt Ravnsbæk, Mads Ry Vogel Jørgensen\",\"doi\":\"10.1002/cmtd.202200055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Invited for this month's cover is the group of Daniel R. Sørensen at the University of Aarhus (Denmark) and at the University of Lund (Sweden). The cover picture shows a battery cell designed for in operando neutron powder diffraction. The picture seeks to illustrate the experiment process where lithium ions are moving into the crystal structure of the battery cathode during discharge. This leads to changes in the crystal structure that are very important to understand for optimizing the battery materials. These structural changes are probed in operando by neutron powder diffraction, and neutrons are especially suited for probing the location of Li-ion compared with similar techniques such as X-ray diffraction. The beauty of using neutrons is also that their penetrating power allows for investigating the battery without the need for windows of any kind. Read the full text of their Research Article at 10.1002/cmtd.202200046.</p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本期杂志的封面邀请到了来自丹麦奥胡斯大学和瑞典隆德大学的Daniel R. s . ørensen团队。封面图片显示了一个为中子粉末衍射而设计的电芯。该图试图说明实验过程,其中锂离子在放电过程中进入电池阴极的晶体结构。这导致晶体结构的变化,这对于优化电池材料的理解非常重要。这些结构变化是通过中子粉末衍射在operando中探测到的,与类似的技术(如x射线衍射)相比,中子特别适合探测锂离子的位置。使用中子的好处还在于,它们的穿透力使研究电池不需要任何形式的窗口。阅读他们的研究论文全文:10.1002/cmtd.202200046。
An Easy-to-Use Custom-Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteries
Invited for this month's cover is the group of Daniel R. Sørensen at the University of Aarhus (Denmark) and at the University of Lund (Sweden). The cover picture shows a battery cell designed for in operando neutron powder diffraction. The picture seeks to illustrate the experiment process where lithium ions are moving into the crystal structure of the battery cathode during discharge. This leads to changes in the crystal structure that are very important to understand for optimizing the battery materials. These structural changes are probed in operando by neutron powder diffraction, and neutrons are especially suited for probing the location of Li-ion compared with similar techniques such as X-ray diffraction. The beauty of using neutrons is also that their penetrating power allows for investigating the battery without the need for windows of any kind. Read the full text of their Research Article at 10.1002/cmtd.202200046.