{"title":"磁学中最优形状合成的自由切削网格策略","authors":"F. Dassi, P. Di Barba, A. Russo","doi":"10.1049/smt2.12108","DOIUrl":null,"url":null,"abstract":"<p>The authors propose an innovative technique for dealing with optimal shape design problems that exploits the flexibility of the virtual element method in generating meshes composed of general polygonal and polyhedral elements. Virtual element method and finite element method can coexist on the same discretized domain; therefore, the possibility of dealing with hanging nodes and gluing sub-domain meshes is ensured. Accordingly, the shape synthesis of a magnetic pole is considered as the case study. It is shown that the proposed technique is effective in handling the shape variations dictated by an algorithm of evolutionary optimisation.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12108","citationCount":"0","resultStr":"{\"title\":\"A free-cutting mesh strategy for optimal shape synthesis in magnetics\",\"authors\":\"F. Dassi, P. Di Barba, A. Russo\",\"doi\":\"10.1049/smt2.12108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The authors propose an innovative technique for dealing with optimal shape design problems that exploits the flexibility of the virtual element method in generating meshes composed of general polygonal and polyhedral elements. Virtual element method and finite element method can coexist on the same discretized domain; therefore, the possibility of dealing with hanging nodes and gluing sub-domain meshes is ensured. Accordingly, the shape synthesis of a magnetic pole is considered as the case study. It is shown that the proposed technique is effective in handling the shape variations dictated by an algorithm of evolutionary optimisation.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12108\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12108\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12108","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A free-cutting mesh strategy for optimal shape synthesis in magnetics
The authors propose an innovative technique for dealing with optimal shape design problems that exploits the flexibility of the virtual element method in generating meshes composed of general polygonal and polyhedral elements. Virtual element method and finite element method can coexist on the same discretized domain; therefore, the possibility of dealing with hanging nodes and gluing sub-domain meshes is ensured. Accordingly, the shape synthesis of a magnetic pole is considered as the case study. It is shown that the proposed technique is effective in handling the shape variations dictated by an algorithm of evolutionary optimisation.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.