被动活动识别的自监督多模态融合变压器

IF 1.5 Q3 TELECOMMUNICATIONS IET Wireless Sensor Systems Pub Date : 2022-11-10 DOI:10.1049/wss2.12044
Armand K. Koupai, Mohammud J. Bocus, Raul Santos-Rodriguez, Robert J. Piechocki, Ryan McConville
{"title":"被动活动识别的自监督多模态融合变压器","authors":"Armand K. Koupai,&nbsp;Mohammud J. Bocus,&nbsp;Raul Santos-Rodriguez,&nbsp;Robert J. Piechocki,&nbsp;Ryan McConville","doi":"10.1049/wss2.12044","DOIUrl":null,"url":null,"abstract":"<p>The pervasiveness of Wi-Fi signals provides significant opportunities for human sensing and activity recognition in fields such as healthcare. The sensors most commonly used for passive Wi-Fi sensing are based on passive Wi-Fi radar (PWR) and channel state information (CSI) data, however current systems do not effectively exploit the information acquired through multiple sensors to recognise the different activities. In this study, new properties of the Transformer architecture for multimodal sensor fusion are explored. Different signal processing techniques are used to extract multiple image-based features from PWR and CSI data such as spectrograms, scalograms and Markov transition field (MTF). The Fusion Transformer, an attention-based model for multimodal and multi-sensor fusion is first proposed. Experimental results show that the Fusion Transformer approach can achieve competitive results compared to a ResNet architecture but with much fewer resources. To further improve the model, a simple and effective framework for multimodal and multi-sensor self-supervised learning (SSL) is proposed. The self-supervised Fusion Transformer outperforms the baselines, achieving a macro F1-score of 95.9%. Finally, this study shows how this approach significantly outperforms the others when trained with as little as 1% (2 min) of labelled training data to 20% (40 min) of labelled training data.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12044","citationCount":"0","resultStr":"{\"title\":\"Self-supervised multimodal fusion transformer for passive activity recognition\",\"authors\":\"Armand K. Koupai,&nbsp;Mohammud J. Bocus,&nbsp;Raul Santos-Rodriguez,&nbsp;Robert J. Piechocki,&nbsp;Ryan McConville\",\"doi\":\"10.1049/wss2.12044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pervasiveness of Wi-Fi signals provides significant opportunities for human sensing and activity recognition in fields such as healthcare. The sensors most commonly used for passive Wi-Fi sensing are based on passive Wi-Fi radar (PWR) and channel state information (CSI) data, however current systems do not effectively exploit the information acquired through multiple sensors to recognise the different activities. In this study, new properties of the Transformer architecture for multimodal sensor fusion are explored. Different signal processing techniques are used to extract multiple image-based features from PWR and CSI data such as spectrograms, scalograms and Markov transition field (MTF). The Fusion Transformer, an attention-based model for multimodal and multi-sensor fusion is first proposed. Experimental results show that the Fusion Transformer approach can achieve competitive results compared to a ResNet architecture but with much fewer resources. To further improve the model, a simple and effective framework for multimodal and multi-sensor self-supervised learning (SSL) is proposed. The self-supervised Fusion Transformer outperforms the baselines, achieving a macro F1-score of 95.9%. Finally, this study shows how this approach significantly outperforms the others when trained with as little as 1% (2 min) of labelled training data to 20% (40 min) of labelled training data.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

Wi-Fi信号的普及为医疗保健等领域的人类感知和活动识别提供了重要机会。无源Wi-Fi传感最常用的传感器是基于无源Wi-Fi雷达(PWR)和信道状态信息(CSI)数据,然而目前的系统不能有效地利用通过多个传感器获取的信息来识别不同的活动。在本研究中,我们探索了用于多模态传感器融合的Transformer架构的新特性。不同的信号处理技术用于从压水堆和CSI数据中提取多种基于图像的特征,如谱图、尺度图和马尔可夫过渡场(MTF)。首先提出了一种基于注意力的多模态多传感器融合模型融合变压器。实验结果表明,与ResNet架构相比,Fusion Transformer方法可以获得具有竞争力的结果,但所需资源要少得多。为了进一步改进模型,提出了一种简单有效的多模态多传感器自监督学习框架。自我监督的Fusion Transformer优于基线,实现了95.9%的宏观f1得分。最后,本研究表明,当使用1%(2分钟)的标记训练数据到20%(40分钟)的标记训练数据进行训练时,该方法如何显著优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-supervised multimodal fusion transformer for passive activity recognition

The pervasiveness of Wi-Fi signals provides significant opportunities for human sensing and activity recognition in fields such as healthcare. The sensors most commonly used for passive Wi-Fi sensing are based on passive Wi-Fi radar (PWR) and channel state information (CSI) data, however current systems do not effectively exploit the information acquired through multiple sensors to recognise the different activities. In this study, new properties of the Transformer architecture for multimodal sensor fusion are explored. Different signal processing techniques are used to extract multiple image-based features from PWR and CSI data such as spectrograms, scalograms and Markov transition field (MTF). The Fusion Transformer, an attention-based model for multimodal and multi-sensor fusion is first proposed. Experimental results show that the Fusion Transformer approach can achieve competitive results compared to a ResNet architecture but with much fewer resources. To further improve the model, a simple and effective framework for multimodal and multi-sensor self-supervised learning (SSL) is proposed. The self-supervised Fusion Transformer outperforms the baselines, achieving a macro F1-score of 95.9%. Finally, this study shows how this approach significantly outperforms the others when trained with as little as 1% (2 min) of labelled training data to 20% (40 min) of labelled training data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
期刊最新文献
Enhancing offloading with cybersecurity in edge computing for digital twin‐driven patient monitoring SmartCardio: Advancing cardiac risk prediction through Internet of things and edge cloud intelligence Wearable micro‐electro‐mechanical systems pressure sensors in health care: Advancements and trends—A review Design of shipborne cold chain monitoring system based on multi link compression transmission Optimising multi-user wireless networks through discrete Fourier transform-based channel estimation with cascaded intelligent reflecting surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1