{"title":"基于脑电功率和可解释机器学习的冲动性分类。","authors":"Philippa Hüpen, Himanshu Kumar, Aliaksandra Shymanskaya, Ramakrishnan Swaminathan, Ute Habel","doi":"10.1142/S0129065723500065","DOIUrl":null,"url":null,"abstract":"<p><p>Impulsivity is a multidimensional construct often associated with unfavorable outcomes. Previous studies have implicated several electroencephalography (EEG) indices to impulsiveness, but results are heterogeneous and inconsistent. Using a data-driven approach, we identified EEG power features for the prediction of self-reported impulsiveness. To this end, EEG signals of 56 individuals (18 low impulsive, 20 intermediate impulsive, 18 high impulsive) were recorded during a risk-taking task. Extracted EEG power features from 62 electrodes were fed into various machine learning classifiers to identify the most relevant band. Robustness of the classifier was varied by stratified [Formula: see text]-fold cross validation. Alpha and beta band power showed best performance in the classification of impulsiveness (accuracy = 95.18% and 95.11%, respectively) using a random forest classifier. Subsequently, a sequential bidirectional feature selection algorithm was used to estimate the most relevant electrode sites. Results show that as little as 10 electrodes are sufficient to reliably classify impulsiveness using alpha band power ([Formula: see text]-measure = 94.50%). Finally, the Shapley Additive exPlanations (SHAP) analysis approach was employed to reveal the individual EEG features that contributed most to the model's output. Results indicate that frontal as well as posterior midline alpha power seems to be of most importance for the classification of impulsiveness.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impulsivity Classification Using EEG Power and Explainable Machine Learning.\",\"authors\":\"Philippa Hüpen, Himanshu Kumar, Aliaksandra Shymanskaya, Ramakrishnan Swaminathan, Ute Habel\",\"doi\":\"10.1142/S0129065723500065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Impulsivity is a multidimensional construct often associated with unfavorable outcomes. Previous studies have implicated several electroencephalography (EEG) indices to impulsiveness, but results are heterogeneous and inconsistent. Using a data-driven approach, we identified EEG power features for the prediction of self-reported impulsiveness. To this end, EEG signals of 56 individuals (18 low impulsive, 20 intermediate impulsive, 18 high impulsive) were recorded during a risk-taking task. Extracted EEG power features from 62 electrodes were fed into various machine learning classifiers to identify the most relevant band. Robustness of the classifier was varied by stratified [Formula: see text]-fold cross validation. Alpha and beta band power showed best performance in the classification of impulsiveness (accuracy = 95.18% and 95.11%, respectively) using a random forest classifier. Subsequently, a sequential bidirectional feature selection algorithm was used to estimate the most relevant electrode sites. Results show that as little as 10 electrodes are sufficient to reliably classify impulsiveness using alpha band power ([Formula: see text]-measure = 94.50%). Finally, the Shapley Additive exPlanations (SHAP) analysis approach was employed to reveal the individual EEG features that contributed most to the model's output. Results indicate that frontal as well as posterior midline alpha power seems to be of most importance for the classification of impulsiveness.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065723500065\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500065","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Impulsivity Classification Using EEG Power and Explainable Machine Learning.
Impulsivity is a multidimensional construct often associated with unfavorable outcomes. Previous studies have implicated several electroencephalography (EEG) indices to impulsiveness, but results are heterogeneous and inconsistent. Using a data-driven approach, we identified EEG power features for the prediction of self-reported impulsiveness. To this end, EEG signals of 56 individuals (18 low impulsive, 20 intermediate impulsive, 18 high impulsive) were recorded during a risk-taking task. Extracted EEG power features from 62 electrodes were fed into various machine learning classifiers to identify the most relevant band. Robustness of the classifier was varied by stratified [Formula: see text]-fold cross validation. Alpha and beta band power showed best performance in the classification of impulsiveness (accuracy = 95.18% and 95.11%, respectively) using a random forest classifier. Subsequently, a sequential bidirectional feature selection algorithm was used to estimate the most relevant electrode sites. Results show that as little as 10 electrodes are sufficient to reliably classify impulsiveness using alpha band power ([Formula: see text]-measure = 94.50%). Finally, the Shapley Additive exPlanations (SHAP) analysis approach was employed to reveal the individual EEG features that contributed most to the model's output. Results indicate that frontal as well as posterior midline alpha power seems to be of most importance for the classification of impulsiveness.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.