预测用铼-186标记纳米脂质体治疗复发性胶质母细胞瘤的时空反应

Q3 Engineering Brain multiphysics Pub Date : 2023-10-29 DOI:10.1016/j.brain.2023.100084
Chase Christenson , Chengyue Wu , David A. Hormuth II , Shiliang Huang , Ande Bao , Andrew Brenner , Thomas E. Yankeelov
{"title":"预测用铼-186标记纳米脂质体治疗复发性胶质母细胞瘤的时空反应","authors":"Chase Christenson ,&nbsp;Chengyue Wu ,&nbsp;David A. Hormuth II ,&nbsp;Shiliang Huang ,&nbsp;Ande Bao ,&nbsp;Andrew Brenner ,&nbsp;Thomas E. Yankeelov","doi":"10.1016/j.brain.2023.100084","DOIUrl":null,"url":null,"abstract":"<div><p>Rhenium-186 (<sup>186</sup>Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize the delivery of RNL, we have developed a framework to predict patient-specific response to RNL using image-guided mathematical models.</p></div><div><h3>Methods</h3><p>We calibrated a family of reaction-diffusion type models with multi-modality imaging data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient's tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, respectively. The optimal model from the family was selected and used to predict future growth. A simplified version of the model was used in a leave-one-out analysis to predict the development of an individual patient's tumor, based on cohort parameters.</p></div><div><h3>Results</h3><p>Across the cohort, predictions using patient-specific parameters with the selected model were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume and total cell number, respectively, when compared to the measured data. Predictions utilizing the leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the population, respectively.</p></div><div><h3>Conclusion</h3><p>We have shown that patient-specific calibrations of a biology-based mathematical model can be used to make early predictions of response to RNL therapy. Furthermore, the leave-one-out framework indicates that radiation doses determined by SPECT can be used to assign model parameters to make predictions directly following the conclusion of RNL treatment.</p></div>","PeriodicalId":72449,"journal":{"name":"Brain multiphysics","volume":"5 ","pages":"Article 100084"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666522023000229/pdfft?md5=9f035232901ef898e9f65d2a3f7361a5&pid=1-s2.0-S2666522023000229-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting the spatio-temporal response of recurrent glioblastoma treated with rhenium-186 labelled nanoliposomes\",\"authors\":\"Chase Christenson ,&nbsp;Chengyue Wu ,&nbsp;David A. Hormuth II ,&nbsp;Shiliang Huang ,&nbsp;Ande Bao ,&nbsp;Andrew Brenner ,&nbsp;Thomas E. Yankeelov\",\"doi\":\"10.1016/j.brain.2023.100084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rhenium-186 (<sup>186</sup>Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize the delivery of RNL, we have developed a framework to predict patient-specific response to RNL using image-guided mathematical models.</p></div><div><h3>Methods</h3><p>We calibrated a family of reaction-diffusion type models with multi-modality imaging data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient's tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, respectively. The optimal model from the family was selected and used to predict future growth. A simplified version of the model was used in a leave-one-out analysis to predict the development of an individual patient's tumor, based on cohort parameters.</p></div><div><h3>Results</h3><p>Across the cohort, predictions using patient-specific parameters with the selected model were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume and total cell number, respectively, when compared to the measured data. Predictions utilizing the leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the population, respectively.</p></div><div><h3>Conclusion</h3><p>We have shown that patient-specific calibrations of a biology-based mathematical model can be used to make early predictions of response to RNL therapy. Furthermore, the leave-one-out framework indicates that radiation doses determined by SPECT can be used to assign model parameters to make predictions directly following the conclusion of RNL treatment.</p></div>\",\"PeriodicalId\":72449,\"journal\":{\"name\":\"Brain multiphysics\",\"volume\":\"5 \",\"pages\":\"Article 100084\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666522023000229/pdfft?md5=9f035232901ef898e9f65d2a3f7361a5&pid=1-s2.0-S2666522023000229-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain multiphysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666522023000229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain multiphysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666522023000229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

铼-186 (186Re)标记纳米脂质体(RNL)治疗复发性胶质母细胞瘤患者通过局部放射治疗已显示出改善预后的希望。为了优化RNL的提供,我们开发了一个框架,使用图像引导的数学模型来预测患者对RNL的特定反应。方法利用10例患者(NCR01906385)的多模态成像数据,对一系列反应扩散型模型进行校准,预测每位患者肿瘤的时空动态。数据包括纵向磁共振成像(MRI)和单光子发射计算机断层扫描(SPECT),分别估计肿瘤负荷和局部RNL活性。从家庭中选择最优模型并用于预测未来的增长。该模型的简化版本被用于基于队列参数的留一分析,以预测单个患者肿瘤的发展。结果在整个队列中,与测量数据相比,使用所选模型的患者特异性参数进行预测时,肿瘤体积和总细胞数的Spearman相关系数(SCC)分别为0.98和0.93。利用“留一法”预测,整个群体的体积和总细胞数的SCCs分别为0.89和0.88。我们已经证明,基于生物学的数学模型的患者特异性校准可用于对RNL治疗的反应进行早期预测。此外,“留一”框架表明,SPECT确定的辐射剂量可用于分配模型参数,以便在RNL治疗结束后直接进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the spatio-temporal response of recurrent glioblastoma treated with rhenium-186 labelled nanoliposomes

Rhenium-186 (186Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize the delivery of RNL, we have developed a framework to predict patient-specific response to RNL using image-guided mathematical models.

Methods

We calibrated a family of reaction-diffusion type models with multi-modality imaging data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient's tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, respectively. The optimal model from the family was selected and used to predict future growth. A simplified version of the model was used in a leave-one-out analysis to predict the development of an individual patient's tumor, based on cohort parameters.

Results

Across the cohort, predictions using patient-specific parameters with the selected model were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume and total cell number, respectively, when compared to the measured data. Predictions utilizing the leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the population, respectively.

Conclusion

We have shown that patient-specific calibrations of a biology-based mathematical model can be used to make early predictions of response to RNL therapy. Furthermore, the leave-one-out framework indicates that radiation doses determined by SPECT can be used to assign model parameters to make predictions directly following the conclusion of RNL treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain multiphysics
Brain multiphysics Physics and Astronomy (General), Modelling and Simulation, Neuroscience (General), Biomedical Engineering
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
68 days
期刊最新文献
Diffusive secondary injuries in neuronal networks following a blast impact: A morphological and electrophysiological study using a TBI-on-a-Chip model Two for tau: Automated model discovery reveals two-stage tau aggregation dynamics in Alzheimer’s disease Scaling in the brain Quantifying CSF Dynamics disruption in idiopathic normal pressure hydrocephalus using phase lag between transmantle pressure and volumetric flow rate Increased hindbrain motion in Chiari I malformation patients measured through 3D amplified MRI (3D aMRI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1