Tariq Kewan , Jan Philipp Bewersdorf , Carmelo Gurnari , Zhuoer Xie , Maximilian Stahl , Amer M. Zeidan
{"title":"在MDS患者的管理中,何时使用哪种分子预后评分系统?","authors":"Tariq Kewan , Jan Philipp Bewersdorf , Carmelo Gurnari , Zhuoer Xie , Maximilian Stahl , Amer M. Zeidan","doi":"10.1016/j.beha.2023.101517","DOIUrl":null,"url":null,"abstract":"<div><p>Myelodysplastic syndromes/neoplasms (MDS) are a heterogeneous group of hematopoietic cancers characterized by recurrent molecular alterations driving the disease pathogenesis with a variable propensity for progression to acute myeloid leukemia<span><span><span> (AML). Clinical decision making for MDS relies on appropriate risk stratification at diagnosis, with higher-risk patients requiring more intensive therapy. The conventional clinical prognostic systems including the </span>International Prognostic Scoring System (IPSS) and its revised version (IPSS-R) have dominated the risk stratification of MDS from 1997 until 2022. Concurrently, the use of next-generation sequencing has revolutionized the field by revealing multiple recurrent </span>genetic mutations<span>, which correlate with phenotype and prognosis. Significant efforts have been made to formally incorporate molecular data into prognostic tools to improve proper risk identification and personalize treatment strategies. In this review, we will critically compare the available molecular scoring systems for MDS focusing on areas of progress and potential limitations that can be improved in subsequent revisions of these tools.</span></span></p></div>","PeriodicalId":8744,"journal":{"name":"Best Practice & Research Clinical Haematology","volume":"36 4","pages":"Article 101517"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When to use which molecular prognostic scoring system in the management of patients with MDS?\",\"authors\":\"Tariq Kewan , Jan Philipp Bewersdorf , Carmelo Gurnari , Zhuoer Xie , Maximilian Stahl , Amer M. Zeidan\",\"doi\":\"10.1016/j.beha.2023.101517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Myelodysplastic syndromes/neoplasms (MDS) are a heterogeneous group of hematopoietic cancers characterized by recurrent molecular alterations driving the disease pathogenesis with a variable propensity for progression to acute myeloid leukemia<span><span><span> (AML). Clinical decision making for MDS relies on appropriate risk stratification at diagnosis, with higher-risk patients requiring more intensive therapy. The conventional clinical prognostic systems including the </span>International Prognostic Scoring System (IPSS) and its revised version (IPSS-R) have dominated the risk stratification of MDS from 1997 until 2022. Concurrently, the use of next-generation sequencing has revolutionized the field by revealing multiple recurrent </span>genetic mutations<span>, which correlate with phenotype and prognosis. Significant efforts have been made to formally incorporate molecular data into prognostic tools to improve proper risk identification and personalize treatment strategies. In this review, we will critically compare the available molecular scoring systems for MDS focusing on areas of progress and potential limitations that can be improved in subsequent revisions of these tools.</span></span></p></div>\",\"PeriodicalId\":8744,\"journal\":{\"name\":\"Best Practice & Research Clinical Haematology\",\"volume\":\"36 4\",\"pages\":\"Article 101517\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Best Practice & Research Clinical Haematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1521692623000786\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best Practice & Research Clinical Haematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521692623000786","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
When to use which molecular prognostic scoring system in the management of patients with MDS?
Myelodysplastic syndromes/neoplasms (MDS) are a heterogeneous group of hematopoietic cancers characterized by recurrent molecular alterations driving the disease pathogenesis with a variable propensity for progression to acute myeloid leukemia (AML). Clinical decision making for MDS relies on appropriate risk stratification at diagnosis, with higher-risk patients requiring more intensive therapy. The conventional clinical prognostic systems including the International Prognostic Scoring System (IPSS) and its revised version (IPSS-R) have dominated the risk stratification of MDS from 1997 until 2022. Concurrently, the use of next-generation sequencing has revolutionized the field by revealing multiple recurrent genetic mutations, which correlate with phenotype and prognosis. Significant efforts have been made to formally incorporate molecular data into prognostic tools to improve proper risk identification and personalize treatment strategies. In this review, we will critically compare the available molecular scoring systems for MDS focusing on areas of progress and potential limitations that can be improved in subsequent revisions of these tools.
期刊介绍:
Best Practice & Research Clinical Haematology publishes review articles integrating the results from the latest original research articles into practical, evidence-based review articles. These articles seek to address the key clinical issues of diagnosis, treatment and patient management. Each issue follows a problem-orientated approach which focuses on the key questions to be addressed, clearly defining what is known and not known, covering the spectrum of clinical and laboratory haematological practice and research. Although most reviews are invited, the Editor welcomes suggestions from potential authors.