基于马尔可夫链的随机行走移动用户性能建模与分析

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE Journal of Computer and System Sciences Pub Date : 2023-10-18 DOI:10.1016/j.jcss.2023.103492
Keqin Li
{"title":"基于马尔可夫链的随机行走移动用户性能建模与分析","authors":"Keqin Li","doi":"10.1016/j.jcss.2023.103492","DOIUrl":null,"url":null,"abstract":"<div><p>We treat user equipments (UEs) and mobile edge clouds (MECs) as M/G/1 queueing systems, which are the most suitable, powerful, and manageable models. We propose a computation offloading strategy which can satisfy all UEs served by an MEC and develop an efficient method to find such a strategy. We use discrete-time Markov chains, continuous-time Markov chains, and semi-Markov processes to characterize the mobility of UEs, and calculate the joint probability distribution of the locations of UEs at any time. We extend our Markov chains to incorporate mobility cost into consideration, and are able to obtain the average response time of a UE with location change penalty. We can algorithmically predict the overall average response time of tasks generated on a UE and also demonstrate numerical data and examples. We consider the power constrained MEC speed setting problem and develop an algorithm to solve the problem for two power consumption models.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"140 ","pages":"Article 103492"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance modeling and analysis for randomly walking mobile users with Markov chains\",\"authors\":\"Keqin Li\",\"doi\":\"10.1016/j.jcss.2023.103492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We treat user equipments (UEs) and mobile edge clouds (MECs) as M/G/1 queueing systems, which are the most suitable, powerful, and manageable models. We propose a computation offloading strategy which can satisfy all UEs served by an MEC and develop an efficient method to find such a strategy. We use discrete-time Markov chains, continuous-time Markov chains, and semi-Markov processes to characterize the mobility of UEs, and calculate the joint probability distribution of the locations of UEs at any time. We extend our Markov chains to incorporate mobility cost into consideration, and are able to obtain the average response time of a UE with location change penalty. We can algorithmically predict the overall average response time of tasks generated on a UE and also demonstrate numerical data and examples. We consider the power constrained MEC speed setting problem and develop an algorithm to solve the problem for two power consumption models.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"140 \",\"pages\":\"Article 103492\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000971\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000971","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们将用户设备(ue)和移动边缘云(mec)视为M/G/1排队系统,这是最合适、最强大、最易于管理的模型。我们提出了一种能够满足MEC所服务的所有ue的计算卸载策略,并开发了一种求解该策略的有效方法。我们使用离散时间马尔可夫链、连续时间马尔可夫链和半马尔可夫过程来描述ue的迁移性,并计算ue在任意时刻位置的联合概率分布。将马尔可夫链扩展到考虑移动成本的情况下,得到了具有位置变化惩罚的终端的平均响应时间。我们可以通过算法预测在UE上生成的任务的总体平均响应时间,并演示数值数据和示例。考虑功率受限的MEC速度设定问题,提出了一种求解两种功耗模型的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance modeling and analysis for randomly walking mobile users with Markov chains

We treat user equipments (UEs) and mobile edge clouds (MECs) as M/G/1 queueing systems, which are the most suitable, powerful, and manageable models. We propose a computation offloading strategy which can satisfy all UEs served by an MEC and develop an efficient method to find such a strategy. We use discrete-time Markov chains, continuous-time Markov chains, and semi-Markov processes to characterize the mobility of UEs, and calculate the joint probability distribution of the locations of UEs at any time. We extend our Markov chains to incorporate mobility cost into consideration, and are able to obtain the average response time of a UE with location change penalty. We can algorithmically predict the overall average response time of tasks generated on a UE and also demonstrate numerical data and examples. We consider the power constrained MEC speed setting problem and develop an algorithm to solve the problem for two power consumption models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
期刊最新文献
Embedding hypercubes into torus and Cartesian product of paths and/or cycles for minimizing wirelength Algorithms and Turing kernels for detecting and counting small patterns in unit disk graphs Backwards-reachability for cooperating multi-pushdown systems On computing optimal temporal branchings and spanning subgraphs Parameterized results on acyclic matchings with implications for related problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1