{"title":"氟化纤维改性碳-亚麻杂化复合材料的研究","authors":"Jean-Charles Agopian , Olivier Téraube , Samar Hajjar-Garreau , Karine Charlet , Marc Dubois","doi":"10.1016/j.jfluchem.2023.110213","DOIUrl":null,"url":null,"abstract":"<div><p>Knowing that fibre reinforced polymers are sensitive to moisture through their interphases, carbon and flax fibres sized with Bisphenol A diglycidyl ether were fluorinated under a N<sub>2</sub>/F<sub>2</sub> atmosphere. Because of differences in reactivity of gaseous F<sub>2</sub> between fibres and sizing, only the latter has been fluorinated, resulting in a covalent grafting of fluorine atoms onto the fibres, that has been evidenced by Infrared spectroscopy, and X-Ray Photoelectron Spectroscopy. Fluorinated fibres exhibit enhanced mechanical properties, as highlighted by tensile tests. Hybrid and non-hybrid composite materials were then fabricated with vacuum infusion process, using non-fluorinated and fluorinated carbon and flax fibres. Their hydrothermal behaviour and mechanical properties were investigated, in order to study the impact of both hybridisation and fibre fluorination on the composite properties. A better water resistance was observed for polymer materials reinforced with fluorinated fibres, whereas their mechanical properties were slightly lower than polymers reinforced with non-fluorinated fibres.</p></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"272 ","pages":"Article 110213"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of carbon-flax hybrid composites modified by fibre fluorination\",\"authors\":\"Jean-Charles Agopian , Olivier Téraube , Samar Hajjar-Garreau , Karine Charlet , Marc Dubois\",\"doi\":\"10.1016/j.jfluchem.2023.110213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Knowing that fibre reinforced polymers are sensitive to moisture through their interphases, carbon and flax fibres sized with Bisphenol A diglycidyl ether were fluorinated under a N<sub>2</sub>/F<sub>2</sub> atmosphere. Because of differences in reactivity of gaseous F<sub>2</sub> between fibres and sizing, only the latter has been fluorinated, resulting in a covalent grafting of fluorine atoms onto the fibres, that has been evidenced by Infrared spectroscopy, and X-Ray Photoelectron Spectroscopy. Fluorinated fibres exhibit enhanced mechanical properties, as highlighted by tensile tests. Hybrid and non-hybrid composite materials were then fabricated with vacuum infusion process, using non-fluorinated and fluorinated carbon and flax fibres. Their hydrothermal behaviour and mechanical properties were investigated, in order to study the impact of both hybridisation and fibre fluorination on the composite properties. A better water resistance was observed for polymer materials reinforced with fluorinated fibres, whereas their mechanical properties were slightly lower than polymers reinforced with non-fluorinated fibres.</p></div>\",\"PeriodicalId\":357,\"journal\":{\"name\":\"Journal of Fluorine Chemistry\",\"volume\":\"272 \",\"pages\":\"Article 110213\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorine Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022113923001288\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorine Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022113923001288","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Study of carbon-flax hybrid composites modified by fibre fluorination
Knowing that fibre reinforced polymers are sensitive to moisture through their interphases, carbon and flax fibres sized with Bisphenol A diglycidyl ether were fluorinated under a N2/F2 atmosphere. Because of differences in reactivity of gaseous F2 between fibres and sizing, only the latter has been fluorinated, resulting in a covalent grafting of fluorine atoms onto the fibres, that has been evidenced by Infrared spectroscopy, and X-Ray Photoelectron Spectroscopy. Fluorinated fibres exhibit enhanced mechanical properties, as highlighted by tensile tests. Hybrid and non-hybrid composite materials were then fabricated with vacuum infusion process, using non-fluorinated and fluorinated carbon and flax fibres. Their hydrothermal behaviour and mechanical properties were investigated, in order to study the impact of both hybridisation and fibre fluorination on the composite properties. A better water resistance was observed for polymer materials reinforced with fluorinated fibres, whereas their mechanical properties were slightly lower than polymers reinforced with non-fluorinated fibres.
期刊介绍:
The Journal of Fluorine Chemistry contains reviews, original papers and short communications. The journal covers all aspects of pure and applied research on the chemistry as well as on the applications of fluorine, and of compounds or materials where fluorine exercises significant effects. This can include all chemistry research areas (inorganic, organic, organometallic, macromolecular and physical chemistry) but also includes papers on biological/biochemical related aspects of Fluorine chemistry as well as medicinal, agrochemical and pharmacological research. The Journal of Fluorine Chemistry also publishes environmental and industrial papers dealing with aspects of Fluorine chemistry on energy and material sciences. Preparative and physico-chemical investigations as well as theoretical, structural and mechanistic aspects are covered. The Journal, however, does not accept work of purely routine nature.
For reviews and special issues on particular topics of fluorine chemistry or from selected symposia, please contact the Regional Editors for further details.