Yaron Yeger , Onno Boxma , Jacques Resing , Maria Vlasiou
{"title":"带消费的ASIP串联队列","authors":"Yaron Yeger , Onno Boxma , Jacques Resing , Maria Vlasiou","doi":"10.1016/j.peva.2023.102380","DOIUrl":null,"url":null,"abstract":"<div><p>The Asymmetric Inclusion Process (ASIP) tandem queue is a model of stations in series with a gate after each station. At a gate opening, all customers in that station instantaneously move to the next station unidirectionally. In our study, we enhance the ASIP model by introducing the capability for individual customers to independently move from one station to the next, and by allowing both individual customers and batches of customers from any station to exit the system. The model is inspired by the process by which macromolecules are transported within cells.</p><p>We present a comprehensive analysis of various aspects of the queue length in the ASIP tandem model. Specifically, we provide an exact analysis of queue length moments and correlations and, under certain circumstances, of the queue length distribution. Furthermore, we propose an approximation for the joint queue length distribution. This approximation is derived using three different approaches, one of which employs the concept of the replica mean-field limit. Among other results, our analysis offers insight into the extent to which nutrients can support the survival of a cell.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"163 ","pages":"Article 102380"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166531623000500/pdfft?md5=979d6daae1fd3cf701761a51f472a8ff&pid=1-s2.0-S0166531623000500-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ASIP tandem queues with consumption\",\"authors\":\"Yaron Yeger , Onno Boxma , Jacques Resing , Maria Vlasiou\",\"doi\":\"10.1016/j.peva.2023.102380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Asymmetric Inclusion Process (ASIP) tandem queue is a model of stations in series with a gate after each station. At a gate opening, all customers in that station instantaneously move to the next station unidirectionally. In our study, we enhance the ASIP model by introducing the capability for individual customers to independently move from one station to the next, and by allowing both individual customers and batches of customers from any station to exit the system. The model is inspired by the process by which macromolecules are transported within cells.</p><p>We present a comprehensive analysis of various aspects of the queue length in the ASIP tandem model. Specifically, we provide an exact analysis of queue length moments and correlations and, under certain circumstances, of the queue length distribution. Furthermore, we propose an approximation for the joint queue length distribution. This approximation is derived using three different approaches, one of which employs the concept of the replica mean-field limit. Among other results, our analysis offers insight into the extent to which nutrients can support the survival of a cell.</p></div>\",\"PeriodicalId\":19964,\"journal\":{\"name\":\"Performance Evaluation\",\"volume\":\"163 \",\"pages\":\"Article 102380\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166531623000500/pdfft?md5=979d6daae1fd3cf701761a51f472a8ff&pid=1-s2.0-S0166531623000500-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166531623000500\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531623000500","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
The Asymmetric Inclusion Process (ASIP) tandem queue is a model of stations in series with a gate after each station. At a gate opening, all customers in that station instantaneously move to the next station unidirectionally. In our study, we enhance the ASIP model by introducing the capability for individual customers to independently move from one station to the next, and by allowing both individual customers and batches of customers from any station to exit the system. The model is inspired by the process by which macromolecules are transported within cells.
We present a comprehensive analysis of various aspects of the queue length in the ASIP tandem model. Specifically, we provide an exact analysis of queue length moments and correlations and, under certain circumstances, of the queue length distribution. Furthermore, we propose an approximation for the joint queue length distribution. This approximation is derived using three different approaches, one of which employs the concept of the replica mean-field limit. Among other results, our analysis offers insight into the extent to which nutrients can support the survival of a cell.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science