{"title":"热带印度洋春季季风间期浮游生物代谢平衡的空间变异性","authors":"V.V.S.S. Sarma , M.H.K. Prasad , C.K. Sherin , K.R. Mangalaa","doi":"10.1016/j.dsr2.2023.105342","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The tropical Indian Ocean consists of three basins, namely the Arabian Sea (AS), Bay of Bengal (BoB) and Southern Indian Ocean (SIO), with relatively nutrient-rich waters in the former two basins. It is hypothesized that the excess carbon produced in the northern Indian Ocean may support heterotrophic carbon demand in the SIO. In order to test this hypothesis, deck incubation experiments were conducted during the spring intermonsoon under the aegis of the Indian-GEOTRACES program. Nutrients in the mixed layer were low in the SIO compared to AS and BoB due to strong thermal stratification in the former region. Dominant net </span>autotrophy<span> was noticed in the AS whereas net heterotrophy<span><span> in the BoB and SIO. High community respiration (CR) was observed in the BoB which may be supported by riverine organic carbon, whereas in situ produced and advected excess carbon from the northern Indian Ocean may support in AS and SIO respectively. Net community production (NCP) displayed an inverse (linear) relationship with temperature (salinity) in the </span>euphotic zone<span> in the BoB and SIO suggesting that stratification driven by river discharge and equatorial currents, respectively, reduced nutrients inputs through vertical mixing in the upper ocean resulting in the formation of the strong net heterotrophy and contrast to this was found in the AS due to increase in primary production due to nitrogen fixation. The euphotic zone integrated nutrients displayed a linear relationship with NCP and Gross Primary Production (GPP) indicating that the availability of nutrients controlled the plankton metabolic rates in the tropical Indian Ocean. The threshold of GPP for plankton metabolic balance in the tropical Indian Ocean (1.9 mmol O</span></span></span></span><sub>2</sub> m<sup>−3</sup> d<sup>−1</sup>) was close to that of the global mean (2.2 mmol O<sub>2</sub> m<sup>−3</sup> d<sup>−1</sup>). The slope of the log-log relationship between GPP and CR was 0.5 and it is close to that of the global mean value of 0.60.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"212 ","pages":"Article 105342"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial variability in plankton metabolic balance in the tropical Indian Ocean during spring intermonsoon\",\"authors\":\"V.V.S.S. Sarma , M.H.K. Prasad , C.K. Sherin , K.R. Mangalaa\",\"doi\":\"10.1016/j.dsr2.2023.105342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The tropical Indian Ocean consists of three basins, namely the Arabian Sea (AS), Bay of Bengal (BoB) and Southern Indian Ocean (SIO), with relatively nutrient-rich waters in the former two basins. It is hypothesized that the excess carbon produced in the northern Indian Ocean may support heterotrophic carbon demand in the SIO. In order to test this hypothesis, deck incubation experiments were conducted during the spring intermonsoon under the aegis of the Indian-GEOTRACES program. Nutrients in the mixed layer were low in the SIO compared to AS and BoB due to strong thermal stratification in the former region. Dominant net </span>autotrophy<span> was noticed in the AS whereas net heterotrophy<span><span> in the BoB and SIO. High community respiration (CR) was observed in the BoB which may be supported by riverine organic carbon, whereas in situ produced and advected excess carbon from the northern Indian Ocean may support in AS and SIO respectively. Net community production (NCP) displayed an inverse (linear) relationship with temperature (salinity) in the </span>euphotic zone<span> in the BoB and SIO suggesting that stratification driven by river discharge and equatorial currents, respectively, reduced nutrients inputs through vertical mixing in the upper ocean resulting in the formation of the strong net heterotrophy and contrast to this was found in the AS due to increase in primary production due to nitrogen fixation. The euphotic zone integrated nutrients displayed a linear relationship with NCP and Gross Primary Production (GPP) indicating that the availability of nutrients controlled the plankton metabolic rates in the tropical Indian Ocean. The threshold of GPP for plankton metabolic balance in the tropical Indian Ocean (1.9 mmol O</span></span></span></span><sub>2</sub> m<sup>−3</sup> d<sup>−1</sup>) was close to that of the global mean (2.2 mmol O<sub>2</sub> m<sup>−3</sup> d<sup>−1</sup>). The slope of the log-log relationship between GPP and CR was 0.5 and it is close to that of the global mean value of 0.60.</p></div>\",\"PeriodicalId\":11120,\"journal\":{\"name\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"volume\":\"212 \",\"pages\":\"Article 105342\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967064523000929\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000929","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Spatial variability in plankton metabolic balance in the tropical Indian Ocean during spring intermonsoon
The tropical Indian Ocean consists of three basins, namely the Arabian Sea (AS), Bay of Bengal (BoB) and Southern Indian Ocean (SIO), with relatively nutrient-rich waters in the former two basins. It is hypothesized that the excess carbon produced in the northern Indian Ocean may support heterotrophic carbon demand in the SIO. In order to test this hypothesis, deck incubation experiments were conducted during the spring intermonsoon under the aegis of the Indian-GEOTRACES program. Nutrients in the mixed layer were low in the SIO compared to AS and BoB due to strong thermal stratification in the former region. Dominant net autotrophy was noticed in the AS whereas net heterotrophy in the BoB and SIO. High community respiration (CR) was observed in the BoB which may be supported by riverine organic carbon, whereas in situ produced and advected excess carbon from the northern Indian Ocean may support in AS and SIO respectively. Net community production (NCP) displayed an inverse (linear) relationship with temperature (salinity) in the euphotic zone in the BoB and SIO suggesting that stratification driven by river discharge and equatorial currents, respectively, reduced nutrients inputs through vertical mixing in the upper ocean resulting in the formation of the strong net heterotrophy and contrast to this was found in the AS due to increase in primary production due to nitrogen fixation. The euphotic zone integrated nutrients displayed a linear relationship with NCP and Gross Primary Production (GPP) indicating that the availability of nutrients controlled the plankton metabolic rates in the tropical Indian Ocean. The threshold of GPP for plankton metabolic balance in the tropical Indian Ocean (1.9 mmol O2 m−3 d−1) was close to that of the global mean (2.2 mmol O2 m−3 d−1). The slope of the log-log relationship between GPP and CR was 0.5 and it is close to that of the global mean value of 0.60.
期刊介绍:
Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.