Selina Beal , Iain Stewart , Paul Hatton , Marysia Placzek , Ilida Ortega
{"title":"随机排列电纺丝支架的制备和表征用于研究下丘脑干/祖细胞行为","authors":"Selina Beal , Iain Stewart , Paul Hatton , Marysia Placzek , Ilida Ortega","doi":"10.1016/j.engreg.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Tanycytes are stem/progenitor cells that reside in the hypothalamus of the adult vertebrate brain. Tanycytes can be cultured as free-floating neurospheres <em>in vitro</em> but tend to spontaneously differentiate over time. Here we asked whether morphological cues provided by engineered polymer scaffolds can modify spontaneous differentiation. Tanycyte-derived neurospheres were cultured on electrospun scaffolds, prepared with either random or aligned fiber morphologies. Cells dispersed widely on the scaffolds, and - on aligned scaffolds - were highly organized, orientated parallel to the fibers. Immunocytochemical analysis showed that cells cultured on aligned scaffolds showed significantly greater expression of the neural stem/progenitor cell marker, NrCAM and reduced expression of differentiated cell markers in comparison to those cultured on random scaffolds. Together this shows that tanycytes respond to local engineered cues, and that a morphologically constrained environment can better maintain tanycytes as stem cells. The aligned scaffold culture system provides a powerful tool to better investigate this novel stem/progenitor cell population.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"5 1","pages":"Pages 11-20"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266613812300052X/pdfft?md5=e4d415da26ebce844bd594a1de785963&pid=1-s2.0-S266613812300052X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication and characterisation of random and aligned electrospun scaffolds to investigate hypothalamic stem/progenitor cell behaviour\",\"authors\":\"Selina Beal , Iain Stewart , Paul Hatton , Marysia Placzek , Ilida Ortega\",\"doi\":\"10.1016/j.engreg.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tanycytes are stem/progenitor cells that reside in the hypothalamus of the adult vertebrate brain. Tanycytes can be cultured as free-floating neurospheres <em>in vitro</em> but tend to spontaneously differentiate over time. Here we asked whether morphological cues provided by engineered polymer scaffolds can modify spontaneous differentiation. Tanycyte-derived neurospheres were cultured on electrospun scaffolds, prepared with either random or aligned fiber morphologies. Cells dispersed widely on the scaffolds, and - on aligned scaffolds - were highly organized, orientated parallel to the fibers. Immunocytochemical analysis showed that cells cultured on aligned scaffolds showed significantly greater expression of the neural stem/progenitor cell marker, NrCAM and reduced expression of differentiated cell markers in comparison to those cultured on random scaffolds. Together this shows that tanycytes respond to local engineered cues, and that a morphologically constrained environment can better maintain tanycytes as stem cells. The aligned scaffold culture system provides a powerful tool to better investigate this novel stem/progenitor cell population.</p></div>\",\"PeriodicalId\":72919,\"journal\":{\"name\":\"Engineered regeneration\",\"volume\":\"5 1\",\"pages\":\"Pages 11-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266613812300052X/pdfft?md5=e4d415da26ebce844bd594a1de785963&pid=1-s2.0-S266613812300052X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineered regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266613812300052X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266613812300052X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Fabrication and characterisation of random and aligned electrospun scaffolds to investigate hypothalamic stem/progenitor cell behaviour
Tanycytes are stem/progenitor cells that reside in the hypothalamus of the adult vertebrate brain. Tanycytes can be cultured as free-floating neurospheres in vitro but tend to spontaneously differentiate over time. Here we asked whether morphological cues provided by engineered polymer scaffolds can modify spontaneous differentiation. Tanycyte-derived neurospheres were cultured on electrospun scaffolds, prepared with either random or aligned fiber morphologies. Cells dispersed widely on the scaffolds, and - on aligned scaffolds - were highly organized, orientated parallel to the fibers. Immunocytochemical analysis showed that cells cultured on aligned scaffolds showed significantly greater expression of the neural stem/progenitor cell marker, NrCAM and reduced expression of differentiated cell markers in comparison to those cultured on random scaffolds. Together this shows that tanycytes respond to local engineered cues, and that a morphologically constrained environment can better maintain tanycytes as stem cells. The aligned scaffold culture system provides a powerful tool to better investigate this novel stem/progenitor cell population.