{"title":"规则波中球入水的实验观察","authors":"Qian Wang, Changze Zhao, Haocheng Lu, Hua Liu","doi":"10.1016/j.taml.2023.100473","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel experiment to observe the whole water entry process of a free-falling sphere into a regular wave. A time-accurate synchronizing system modulates the moment elaborately to ensure the sphere impacting onto the water surface at the desirable wave phase. Four high-speed cameras focus locally to measure the high-precision size of the cavity evolution. Meanwhile, the aggregated field view of the camera array covers both the splash above the free surface and the entire cavity in the wave. The detailed methodologies are described and verified for the hardware set-up and the image post-processing. The theoretical maximum deviation is 1.7% on the space scale. The integral morphology of the cavity is captured precisely in the coordinate system during the sphere penetrates through the water at four representative wave phases and the still water. The result shows that the horizontal velocity of the fluid particle in the wave impels the cavity and changes the shape distinctly. Notably, the wave motion causes the cavity to pinch off earlier at the wave trough phase and later at the wave crest phase than in the still water. The wave motion influences the falling process of the sphere slightly in the present parameters.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000442/pdfft?md5=37dbf755730aa971c0fe1120ed28267a&pid=1-s2.0-S2095034923000442-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental observation on water entry of a sphere in regular wave\",\"authors\":\"Qian Wang, Changze Zhao, Haocheng Lu, Hua Liu\",\"doi\":\"10.1016/j.taml.2023.100473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel experiment to observe the whole water entry process of a free-falling sphere into a regular wave. A time-accurate synchronizing system modulates the moment elaborately to ensure the sphere impacting onto the water surface at the desirable wave phase. Four high-speed cameras focus locally to measure the high-precision size of the cavity evolution. Meanwhile, the aggregated field view of the camera array covers both the splash above the free surface and the entire cavity in the wave. The detailed methodologies are described and verified for the hardware set-up and the image post-processing. The theoretical maximum deviation is 1.7% on the space scale. The integral morphology of the cavity is captured precisely in the coordinate system during the sphere penetrates through the water at four representative wave phases and the still water. The result shows that the horizontal velocity of the fluid particle in the wave impels the cavity and changes the shape distinctly. Notably, the wave motion causes the cavity to pinch off earlier at the wave trough phase and later at the wave crest phase than in the still water. The wave motion influences the falling process of the sphere slightly in the present parameters.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000442/pdfft?md5=37dbf755730aa971c0fe1120ed28267a&pid=1-s2.0-S2095034923000442-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000442\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000442","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Experimental observation on water entry of a sphere in regular wave
This paper presents a novel experiment to observe the whole water entry process of a free-falling sphere into a regular wave. A time-accurate synchronizing system modulates the moment elaborately to ensure the sphere impacting onto the water surface at the desirable wave phase. Four high-speed cameras focus locally to measure the high-precision size of the cavity evolution. Meanwhile, the aggregated field view of the camera array covers both the splash above the free surface and the entire cavity in the wave. The detailed methodologies are described and verified for the hardware set-up and the image post-processing. The theoretical maximum deviation is 1.7% on the space scale. The integral morphology of the cavity is captured precisely in the coordinate system during the sphere penetrates through the water at four representative wave phases and the still water. The result shows that the horizontal velocity of the fluid particle in the wave impels the cavity and changes the shape distinctly. Notably, the wave motion causes the cavity to pinch off earlier at the wave trough phase and later at the wave crest phase than in the still water. The wave motion influences the falling process of the sphere slightly in the present parameters.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).