基于GPU/CPU异构架构并行计算平台的不可压缩流求解器

IF 3.2 3区 工程技术 Q2 MECHANICS Theoretical and Applied Mechanics Letters Pub Date : 2023-09-01 DOI:10.1016/j.taml.2023.100474
Qianqian Li , Rong Li , Zixuan Yang
{"title":"基于GPU/CPU异构架构并行计算平台的不可压缩流求解器","authors":"Qianqian Li ,&nbsp;Rong Li ,&nbsp;Zixuan Yang","doi":"10.1016/j.taml.2023.100474","DOIUrl":null,"url":null,"abstract":"<div><p>A computational fluid dynamics (CFD) solver for a GPU/CPU heterogeneous architecture parallel computing platform is developed to simulate incompressible flows on billion-level grid points. To solve the Poisson equation, the conjugate gradient method is used as a basic solver, and a Chebyshev method in combination with a Jacobi sub-preconditioner is used as a preconditioner. The developed CFD solver shows good performance on parallel efficiency, which exceeds <span><math><mrow><mn>90</mn><mo>%</mo></mrow></math></span> in the weak-scalability test when the number of grid points allocated to each GPU card is greater than <span><math><msup><mn>208</mn><mn>3</mn></msup></math></span>. In the acceleration test, it is found that running a simulation with <span><math><msup><mn>1040</mn><mn>3</mn></msup></math></span> grid points on 125 GPU cards accelerates by 203.6x over the same number of CPU cores. The developed solver is then tested in the context of a two-dimensional lid-driven cavity flow and three-dimensional Taylor-Green vortex flow. The results are consistent with previous results in the literature.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000454/pdfft?md5=19968f76c63ab8b2b2147856309aaa18&pid=1-s2.0-S2095034923000454-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An incompressible flow solver on a GPU/CPU heterogeneous architecture parallel computing platform\",\"authors\":\"Qianqian Li ,&nbsp;Rong Li ,&nbsp;Zixuan Yang\",\"doi\":\"10.1016/j.taml.2023.100474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A computational fluid dynamics (CFD) solver for a GPU/CPU heterogeneous architecture parallel computing platform is developed to simulate incompressible flows on billion-level grid points. To solve the Poisson equation, the conjugate gradient method is used as a basic solver, and a Chebyshev method in combination with a Jacobi sub-preconditioner is used as a preconditioner. The developed CFD solver shows good performance on parallel efficiency, which exceeds <span><math><mrow><mn>90</mn><mo>%</mo></mrow></math></span> in the weak-scalability test when the number of grid points allocated to each GPU card is greater than <span><math><msup><mn>208</mn><mn>3</mn></msup></math></span>. In the acceleration test, it is found that running a simulation with <span><math><msup><mn>1040</mn><mn>3</mn></msup></math></span> grid points on 125 GPU cards accelerates by 203.6x over the same number of CPU cores. The developed solver is then tested in the context of a two-dimensional lid-driven cavity flow and three-dimensional Taylor-Green vortex flow. The results are consistent with previous results in the literature.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000454/pdfft?md5=19968f76c63ab8b2b2147856309aaa18&pid=1-s2.0-S2095034923000454-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000454\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000454","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

为模拟十亿级网格点上的不可压缩流动,开发了一种基于GPU/CPU异构架构并行计算平台的计算流体动力学求解器。为求解泊松方程,采用共轭梯度法作为基本解,结合Jacobi子预条件的Chebyshev法作为预条件。所开发的CFD求解器在并行效率上表现良好,当分配给每个GPU卡的网格点数大于2083时,在弱可扩展性测试中并行效率超过90%。在加速测试中,发现在125个GPU卡上运行10403个网格点的模拟,在相同数量的CPU内核上加速203.6倍。然后在二维盖子驱动的腔体流动和三维Taylor-Green涡旋流动的背景下对所开发的求解器进行了测试。结果与文献中已有的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An incompressible flow solver on a GPU/CPU heterogeneous architecture parallel computing platform

A computational fluid dynamics (CFD) solver for a GPU/CPU heterogeneous architecture parallel computing platform is developed to simulate incompressible flows on billion-level grid points. To solve the Poisson equation, the conjugate gradient method is used as a basic solver, and a Chebyshev method in combination with a Jacobi sub-preconditioner is used as a preconditioner. The developed CFD solver shows good performance on parallel efficiency, which exceeds 90% in the weak-scalability test when the number of grid points allocated to each GPU card is greater than 2083. In the acceleration test, it is found that running a simulation with 10403 grid points on 125 GPU cards accelerates by 203.6x over the same number of CPU cores. The developed solver is then tested in the context of a two-dimensional lid-driven cavity flow and three-dimensional Taylor-Green vortex flow. The results are consistent with previous results in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
期刊最新文献
A New Cyclic Cohesive Zone Model for Fatigue Damage Analysis of Welded Vessel Numerical Study of Flow and Thermal Characteristics of Pulsed Impinging Jet on a Dimpled Surface Constrained re-calibration of two-equation Reynolds-averaged Navier–Stokes models Magnetically-actuated Intracorporeal Biopsy Robot Based on Kresling Origami A New Strain-Based Pentagonal Membrane Finite Element for Solid Mechanics Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1