基于3R36膝关节和ESAR足的新型被动经股假体,提供行走和下蹲

IF 3.2 3区 工程技术 Q2 MECHANICS Theoretical and Applied Mechanics Letters Pub Date : 2023-09-01 DOI:10.1016/j.taml.2023.100476
Amer Imran , Borhan Beigzadeh , Mohammad Reza Haghjoo
{"title":"基于3R36膝关节和ESAR足的新型被动经股假体,提供行走和下蹲","authors":"Amer Imran ,&nbsp;Borhan Beigzadeh ,&nbsp;Mohammad Reza Haghjoo","doi":"10.1016/j.taml.2023.100476","DOIUrl":null,"url":null,"abstract":"<div><p>Researchers have proposed various linkage mechanisms to connect knee and ankle joints for above-knee prostheses, but most of them only offer natural walking. However, studies have shown that people assume a squatting posture during daily activities. This paper introduces a novel mechanism that connects the knee joint with the foot-ankle joint to enable both squatting and walking. The prosthetic knee used is the well-known 3R36, while the Energy Storing and Return (ESAR) prosthetic foot is used for the ankle-foot joint. To coordinate knee and ankle joint movements, a six-bar linkage mechanism structure is proposed. Simulation results demonstrate that the proposed modular transfemoral prosthesis accurately mimics the motion patterns of a natural human leg during walking and squatting. For instance, the prosthesis allows a total knee flexion of more than 140° during squatting. The new prosthesis design also incorporates energy-storing mechanisms to reduce energy expenditure during walking for amputees.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000478/pdfft?md5=560291a267a655201edfa6c9a585c331&pid=1-s2.0-S2095034923000478-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new passive transfemoral prosthesis mechanism based on 3R36 knee and ESAR foot providing walking and squatting\",\"authors\":\"Amer Imran ,&nbsp;Borhan Beigzadeh ,&nbsp;Mohammad Reza Haghjoo\",\"doi\":\"10.1016/j.taml.2023.100476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Researchers have proposed various linkage mechanisms to connect knee and ankle joints for above-knee prostheses, but most of them only offer natural walking. However, studies have shown that people assume a squatting posture during daily activities. This paper introduces a novel mechanism that connects the knee joint with the foot-ankle joint to enable both squatting and walking. The prosthetic knee used is the well-known 3R36, while the Energy Storing and Return (ESAR) prosthetic foot is used for the ankle-foot joint. To coordinate knee and ankle joint movements, a six-bar linkage mechanism structure is proposed. Simulation results demonstrate that the proposed modular transfemoral prosthesis accurately mimics the motion patterns of a natural human leg during walking and squatting. For instance, the prosthesis allows a total knee flexion of more than 140° during squatting. The new prosthesis design also incorporates energy-storing mechanisms to reduce energy expenditure during walking for amputees.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000478/pdfft?md5=560291a267a655201edfa6c9a585c331&pid=1-s2.0-S2095034923000478-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000478\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000478","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究人员已经提出了各种连接膝关节和踝关节的连接机制,但大多数只提供自然行走。然而,研究表明,人们在日常活动中会采取蹲姿。本文介绍了一种连接膝关节和足踝关节的新型机构,使其既能下蹲又能行走。使用的假肢膝关节是众所周知的3R36,而能量储存和返回(ESAR)假肢脚用于踝关节-足关节。为了协调膝关节和踝关节的运动,提出了一种六杆机构结构。仿真结果表明,所提出的模块化经股假体准确地模仿了自然人类腿在行走和下蹲时的运动模式。例如,该假体允许在深蹲时膝关节屈曲超过140°。新的假肢设计还结合了能量储存机制,以减少截肢者行走时的能量消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new passive transfemoral prosthesis mechanism based on 3R36 knee and ESAR foot providing walking and squatting

Researchers have proposed various linkage mechanisms to connect knee and ankle joints for above-knee prostheses, but most of them only offer natural walking. However, studies have shown that people assume a squatting posture during daily activities. This paper introduces a novel mechanism that connects the knee joint with the foot-ankle joint to enable both squatting and walking. The prosthetic knee used is the well-known 3R36, while the Energy Storing and Return (ESAR) prosthetic foot is used for the ankle-foot joint. To coordinate knee and ankle joint movements, a six-bar linkage mechanism structure is proposed. Simulation results demonstrate that the proposed modular transfemoral prosthesis accurately mimics the motion patterns of a natural human leg during walking and squatting. For instance, the prosthesis allows a total knee flexion of more than 140° during squatting. The new prosthesis design also incorporates energy-storing mechanisms to reduce energy expenditure during walking for amputees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
期刊最新文献
A New Cyclic Cohesive Zone Model for Fatigue Damage Analysis of Welded Vessel Numerical Study of Flow and Thermal Characteristics of Pulsed Impinging Jet on a Dimpled Surface Constrained re-calibration of two-equation Reynolds-averaged Navier–Stokes models Magnetically-actuated Intracorporeal Biopsy Robot Based on Kresling Origami A New Strain-Based Pentagonal Membrane Finite Element for Solid Mechanics Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1