{"title":"MHD流动的二维模型","authors":"Alban Pothérat , Joël Sommeria , René Moreau","doi":"10.1016/S1287-4620(00)00101-0","DOIUrl":null,"url":null,"abstract":"<div><p>A new model is proposed for low <em>Rm</em> MHD flows which remain turbulent even in the presence of a magnetic field. These flows minimize the Joule dissipation because of their tendency to become two-dimensional and, therefore to suppress all induction effects. However, some small three-dimensional effects, due to inertia and to the electric coupling between the core flow and the Hartmann layers, are present even within the core flow. This new model, which may be seen as an improvement of the Sommeria–Moreau 2D model, introduces this three-dimensionality as a small perturbation. It yields an equation for the average velocity over the magnetic field lines, whose solution agrees well with available measurements performed on isolated vortices.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 2","pages":"Pages 129-134"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00101-0","citationCount":"0","resultStr":"{\"title\":\"2D models for MHD flows\",\"authors\":\"Alban Pothérat , Joël Sommeria , René Moreau\",\"doi\":\"10.1016/S1287-4620(00)00101-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new model is proposed for low <em>Rm</em> MHD flows which remain turbulent even in the presence of a magnetic field. These flows minimize the Joule dissipation because of their tendency to become two-dimensional and, therefore to suppress all induction effects. However, some small three-dimensional effects, due to inertia and to the electric coupling between the core flow and the Hartmann layers, are present even within the core flow. This new model, which may be seen as an improvement of the Sommeria–Moreau 2D model, introduces this three-dimensionality as a small perturbation. It yields an equation for the average velocity over the magnetic field lines, whose solution agrees well with available measurements performed on isolated vortices.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"328 2\",\"pages\":\"Pages 129-134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00101-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000001010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000001010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new model is proposed for low Rm MHD flows which remain turbulent even in the presence of a magnetic field. These flows minimize the Joule dissipation because of their tendency to become two-dimensional and, therefore to suppress all induction effects. However, some small three-dimensional effects, due to inertia and to the electric coupling between the core flow and the Hartmann layers, are present even within the core flow. This new model, which may be seen as an improvement of the Sommeria–Moreau 2D model, introduces this three-dimensionality as a small perturbation. It yields an equation for the average velocity over the magnetic field lines, whose solution agrees well with available measurements performed on isolated vortices.