用于会话推荐的多粒度超图兴趣建模

Chenzhan Shang , Yupeng Hou , Wayne Xin Zhao , Yaliang Li , Jing Zhang
{"title":"用于会话推荐的多粒度超图兴趣建模","authors":"Chenzhan Shang ,&nbsp;Yupeng Hou ,&nbsp;Wayne Xin Zhao ,&nbsp;Yaliang Li ,&nbsp;Jing Zhang","doi":"10.1016/j.aiopen.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Conversational recommender system (CRS) interacts with users through multi-turn dialogues in natural language, which aims to provide high-quality recommendations for user’s instant information need. Although great efforts have been made to develop effective CRS, most of them still focus on the contextual information from the current dialogue, usually suffering from the data scarcity issue. Therefore, we consider leveraging historical dialogue data to enrich the limited contexts of the current dialogue session.</p><p>In this paper, we propose a novel multi-grained hypergraph interest modeling approach to capture user interest beneath intricate historical data from different perspectives. As the core idea, we employ <em>hypergraph</em> to represent complicated semantic relations underlying historical dialogues. In our approach, we first employ the hypergraph structure to model users’ historical dialogue sessions and form a <em>session-based hypergraph</em>, which captures <em>coarse-grained, session-level</em> relations. Second, to alleviate the issue of data scarcity, we use an external knowledge graph and construct a <em>knowledge-based hypergraph</em> considering <em>fine-grained, entity-level</em> semantics. We further conduct multi-grained hypergraph convolution on the two kinds of hypergraphs, and utilize the enhanced representations to develop interest-aware CRS. Extensive experiments on two benchmarks <span>ReDial</span> and <span>TG-ReDial</span> validate the effectiveness of our approach on both recommendation and conversation tasks. Code is available at: <span>https://github.com/RUCAIBox/MHIM</span><svg><path></path></svg>.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"4 ","pages":"Pages 154-164"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651023000177/pdfft?md5=845c75e23c419b9a9e76d0939d4efddc&pid=1-s2.0-S2666651023000177-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-grained hypergraph interest modeling for conversational recommendation\",\"authors\":\"Chenzhan Shang ,&nbsp;Yupeng Hou ,&nbsp;Wayne Xin Zhao ,&nbsp;Yaliang Li ,&nbsp;Jing Zhang\",\"doi\":\"10.1016/j.aiopen.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conversational recommender system (CRS) interacts with users through multi-turn dialogues in natural language, which aims to provide high-quality recommendations for user’s instant information need. Although great efforts have been made to develop effective CRS, most of them still focus on the contextual information from the current dialogue, usually suffering from the data scarcity issue. Therefore, we consider leveraging historical dialogue data to enrich the limited contexts of the current dialogue session.</p><p>In this paper, we propose a novel multi-grained hypergraph interest modeling approach to capture user interest beneath intricate historical data from different perspectives. As the core idea, we employ <em>hypergraph</em> to represent complicated semantic relations underlying historical dialogues. In our approach, we first employ the hypergraph structure to model users’ historical dialogue sessions and form a <em>session-based hypergraph</em>, which captures <em>coarse-grained, session-level</em> relations. Second, to alleviate the issue of data scarcity, we use an external knowledge graph and construct a <em>knowledge-based hypergraph</em> considering <em>fine-grained, entity-level</em> semantics. We further conduct multi-grained hypergraph convolution on the two kinds of hypergraphs, and utilize the enhanced representations to develop interest-aware CRS. Extensive experiments on two benchmarks <span>ReDial</span> and <span>TG-ReDial</span> validate the effectiveness of our approach on both recommendation and conversation tasks. Code is available at: <span>https://github.com/RUCAIBox/MHIM</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"4 \",\"pages\":\"Pages 154-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666651023000177/pdfft?md5=845c75e23c419b9a9e76d0939d4efddc&pid=1-s2.0-S2666651023000177-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651023000177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651023000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

会话推荐系统(CRS)通过自然语言的多回合对话与用户进行交互,旨在为用户提供即时信息需求的高质量推荐。尽管已经为开发有效的CRS做出了巨大努力,但大多数CRS仍然侧重于当前对话的上下文信息,通常存在数据稀缺问题。因此,我们考虑利用历史对话数据来丰富当前对话的有限背景。在本文中,我们提出了一种新的多粒度超图兴趣建模方法,从不同的角度捕捉复杂历史数据下的用户兴趣。我们的核心思想是利用超图来表示历史对话背后复杂的语义关系。在我们的方法中,我们首先使用超图结构对用户的历史对话会话进行建模,并形成基于会话的超图,该超图捕获粗粒度的会话级关系。其次,为了缓解数据稀缺性问题,我们使用外部知识图,并考虑细粒度的实体级语义,构建基于知识的超图。我们进一步对这两种超图进行了多粒度的超图卷积,并利用增强的表示来开发兴趣感知的CRS。在两个基准测试ReDial和TG-ReDial上进行的大量实验验证了我们的方法在推荐和对话任务上的有效性。代码可从https://github.com/RUCAIBox/MHIM获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-grained hypergraph interest modeling for conversational recommendation

Conversational recommender system (CRS) interacts with users through multi-turn dialogues in natural language, which aims to provide high-quality recommendations for user’s instant information need. Although great efforts have been made to develop effective CRS, most of them still focus on the contextual information from the current dialogue, usually suffering from the data scarcity issue. Therefore, we consider leveraging historical dialogue data to enrich the limited contexts of the current dialogue session.

In this paper, we propose a novel multi-grained hypergraph interest modeling approach to capture user interest beneath intricate historical data from different perspectives. As the core idea, we employ hypergraph to represent complicated semantic relations underlying historical dialogues. In our approach, we first employ the hypergraph structure to model users’ historical dialogue sessions and form a session-based hypergraph, which captures coarse-grained, session-level relations. Second, to alleviate the issue of data scarcity, we use an external knowledge graph and construct a knowledge-based hypergraph considering fine-grained, entity-level semantics. We further conduct multi-grained hypergraph convolution on the two kinds of hypergraphs, and utilize the enhanced representations to develop interest-aware CRS. Extensive experiments on two benchmarks ReDial and TG-ReDial validate the effectiveness of our approach on both recommendation and conversation tasks. Code is available at: https://github.com/RUCAIBox/MHIM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1