{"title":"时频域粗-细语音分离方法","authors":"Xue Yang, Changchun Bao, Xianhong Chen","doi":"10.1016/j.specom.2023.103003","DOIUrl":null,"url":null,"abstract":"<div><p>Although time-domain speech separation methods have exhibited the outstanding performance in anechoic scenarios, their effectiveness is considerably reduced in the reverberant scenarios. Compared to the time-domain methods, the speech separation methods in time-frequency (T-F) domain mainly concern the structured T-F representations and have shown a great potential recently. In this paper, we propose a coarse-to-fine speech separation method in the T-F domain, which involves two steps: 1) a rough separation conducted in the coarse phase and 2) a precise extraction accomplished in the refining phase. In the coarse phase, the speech signals of all speakers are initially separated in a rough manner, resulting in some level of distortion in the estimated signals. In the refining phase, the T-F representation of each estimated signal acts as a guide to extract the residual T-F representation for the corresponding speaker, which helps to reduce the distortions caused in the coarse phase. Besides, the specially designed networks used for the coarse and refining phases are jointly trained for superior performance. Furthermore, utilizing the recurrent attention with parallel branches (RAPB) block to fully exploit the contextual information contained in the whole T-F features, the proposed model demonstrates competitive performance on clean datasets with a small number of parameters. Additionally, the proposed method shows more robustness and achieves state-of-the-art results on more realistic datasets.</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"155 ","pages":"Article 103003"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse-to-fine speech separation method in the time-frequency domain\",\"authors\":\"Xue Yang, Changchun Bao, Xianhong Chen\",\"doi\":\"10.1016/j.specom.2023.103003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although time-domain speech separation methods have exhibited the outstanding performance in anechoic scenarios, their effectiveness is considerably reduced in the reverberant scenarios. Compared to the time-domain methods, the speech separation methods in time-frequency (T-F) domain mainly concern the structured T-F representations and have shown a great potential recently. In this paper, we propose a coarse-to-fine speech separation method in the T-F domain, which involves two steps: 1) a rough separation conducted in the coarse phase and 2) a precise extraction accomplished in the refining phase. In the coarse phase, the speech signals of all speakers are initially separated in a rough manner, resulting in some level of distortion in the estimated signals. In the refining phase, the T-F representation of each estimated signal acts as a guide to extract the residual T-F representation for the corresponding speaker, which helps to reduce the distortions caused in the coarse phase. Besides, the specially designed networks used for the coarse and refining phases are jointly trained for superior performance. Furthermore, utilizing the recurrent attention with parallel branches (RAPB) block to fully exploit the contextual information contained in the whole T-F features, the proposed model demonstrates competitive performance on clean datasets with a small number of parameters. Additionally, the proposed method shows more robustness and achieves state-of-the-art results on more realistic datasets.</p></div>\",\"PeriodicalId\":49485,\"journal\":{\"name\":\"Speech Communication\",\"volume\":\"155 \",\"pages\":\"Article 103003\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167639323001371\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639323001371","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Coarse-to-fine speech separation method in the time-frequency domain
Although time-domain speech separation methods have exhibited the outstanding performance in anechoic scenarios, their effectiveness is considerably reduced in the reverberant scenarios. Compared to the time-domain methods, the speech separation methods in time-frequency (T-F) domain mainly concern the structured T-F representations and have shown a great potential recently. In this paper, we propose a coarse-to-fine speech separation method in the T-F domain, which involves two steps: 1) a rough separation conducted in the coarse phase and 2) a precise extraction accomplished in the refining phase. In the coarse phase, the speech signals of all speakers are initially separated in a rough manner, resulting in some level of distortion in the estimated signals. In the refining phase, the T-F representation of each estimated signal acts as a guide to extract the residual T-F representation for the corresponding speaker, which helps to reduce the distortions caused in the coarse phase. Besides, the specially designed networks used for the coarse and refining phases are jointly trained for superior performance. Furthermore, utilizing the recurrent attention with parallel branches (RAPB) block to fully exploit the contextual information contained in the whole T-F features, the proposed model demonstrates competitive performance on clean datasets with a small number of parameters. Additionally, the proposed method shows more robustness and achieves state-of-the-art results on more realistic datasets.
期刊介绍:
Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results.
The journal''s primary objectives are:
• to present a forum for the advancement of human and human-machine speech communication science;
• to stimulate cross-fertilization between different fields of this domain;
• to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.