Fatemeh Rahimi Mehdi Abad, Mohammad Reza Hajizadeh, Mehdi Mahmoodi, Zahra Jalali, Fatemeh Nazem Kazeruni, Jennifer Swann, Reza Hosseiniara, Mojgan Noroozi Karimabad
{"title":"伊朗拉夫桑詹市妊娠期糖尿病母亲和健康母亲所生婴儿脐带血细胞中影响生长和代谢的H19、Mest、Meg3和Peg3基因的评估","authors":"Fatemeh Rahimi Mehdi Abad, Mohammad Reza Hajizadeh, Mehdi Mahmoodi, Zahra Jalali, Fatemeh Nazem Kazeruni, Jennifer Swann, Reza Hosseiniara, Mojgan Noroozi Karimabad","doi":"10.1017/S2040174422000393","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperglycemia during the first trimester leads to an increased risk of innate malformations as well as death at times close to delivery dates. The methylated genes include those from paternal H19 and PEG3 and those from maternal MEST and MEG3 that are necessary for the growth and regulation of the human fetus and its placenta. The aim of this study was to evaluate and compare the expression of these genes in the cord blood of healthy infants born to mothers with gestational diabetes mellitus (GDM) and healthy mothers.This case-control study was conducted on the cord blood of 40 infants born to mothers with GDM and 35 infants born to healthy mothers. Mothers were identified by measuring oral glucose tolerance in the 24th-26th week of pregnancy. Cord blood was obtained post-delivery, and cord blood mononuclear cells were immediately extracted, using Ficoll solution. Then, RNA extraction and cDNA synthesis were performed, and gene expression of MEG3, PEG3, H19, and MEST was assessed through quantitative real-time PCR.Findings show that the expression levels of MEG3, PEG3, H19, and MEST genes were significantly decreased in mononuclear cord blood cells of infants born to mothers with GDM when compared to those of the healthy control group.These findings reveal that the reduction of imprinted genes in mothers with GDM is most likely due to changes in their methylation by an epigenetic process. Considering the importance of GDM due to its high prevalence and its side effects both for mother and fetus, recognizing their exact mechanisms is of high importance. This has to be studied more widely.</p>","PeriodicalId":49167,"journal":{"name":"Journal of Developmental Origins of Health and Disease","volume":"14 2","pages":"182-189"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of H19, Mest, Meg3, and Peg3 genes affecting growth and metabolism in umbilical cord blood cells of infants born to mothers with gestational diabetes and healthy mothers in Rafsanjan City, Iran.\",\"authors\":\"Fatemeh Rahimi Mehdi Abad, Mohammad Reza Hajizadeh, Mehdi Mahmoodi, Zahra Jalali, Fatemeh Nazem Kazeruni, Jennifer Swann, Reza Hosseiniara, Mojgan Noroozi Karimabad\",\"doi\":\"10.1017/S2040174422000393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperglycemia during the first trimester leads to an increased risk of innate malformations as well as death at times close to delivery dates. The methylated genes include those from paternal H19 and PEG3 and those from maternal MEST and MEG3 that are necessary for the growth and regulation of the human fetus and its placenta. The aim of this study was to evaluate and compare the expression of these genes in the cord blood of healthy infants born to mothers with gestational diabetes mellitus (GDM) and healthy mothers.This case-control study was conducted on the cord blood of 40 infants born to mothers with GDM and 35 infants born to healthy mothers. Mothers were identified by measuring oral glucose tolerance in the 24th-26th week of pregnancy. Cord blood was obtained post-delivery, and cord blood mononuclear cells were immediately extracted, using Ficoll solution. Then, RNA extraction and cDNA synthesis were performed, and gene expression of MEG3, PEG3, H19, and MEST was assessed through quantitative real-time PCR.Findings show that the expression levels of MEG3, PEG3, H19, and MEST genes were significantly decreased in mononuclear cord blood cells of infants born to mothers with GDM when compared to those of the healthy control group.These findings reveal that the reduction of imprinted genes in mothers with GDM is most likely due to changes in their methylation by an epigenetic process. Considering the importance of GDM due to its high prevalence and its side effects both for mother and fetus, recognizing their exact mechanisms is of high importance. This has to be studied more widely.</p>\",\"PeriodicalId\":49167,\"journal\":{\"name\":\"Journal of Developmental Origins of Health and Disease\",\"volume\":\"14 2\",\"pages\":\"182-189\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Origins of Health and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S2040174422000393\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Origins of Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S2040174422000393","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Evaluation of H19, Mest, Meg3, and Peg3 genes affecting growth and metabolism in umbilical cord blood cells of infants born to mothers with gestational diabetes and healthy mothers in Rafsanjan City, Iran.
Hyperglycemia during the first trimester leads to an increased risk of innate malformations as well as death at times close to delivery dates. The methylated genes include those from paternal H19 and PEG3 and those from maternal MEST and MEG3 that are necessary for the growth and regulation of the human fetus and its placenta. The aim of this study was to evaluate and compare the expression of these genes in the cord blood of healthy infants born to mothers with gestational diabetes mellitus (GDM) and healthy mothers.This case-control study was conducted on the cord blood of 40 infants born to mothers with GDM and 35 infants born to healthy mothers. Mothers were identified by measuring oral glucose tolerance in the 24th-26th week of pregnancy. Cord blood was obtained post-delivery, and cord blood mononuclear cells were immediately extracted, using Ficoll solution. Then, RNA extraction and cDNA synthesis were performed, and gene expression of MEG3, PEG3, H19, and MEST was assessed through quantitative real-time PCR.Findings show that the expression levels of MEG3, PEG3, H19, and MEST genes were significantly decreased in mononuclear cord blood cells of infants born to mothers with GDM when compared to those of the healthy control group.These findings reveal that the reduction of imprinted genes in mothers with GDM is most likely due to changes in their methylation by an epigenetic process. Considering the importance of GDM due to its high prevalence and its side effects both for mother and fetus, recognizing their exact mechanisms is of high importance. This has to be studied more widely.
期刊介绍:
JDOHaD publishes leading research in the field of Developmental Origins of Health and Disease (DOHaD). The Journal focuses on the environment during early pre-natal and post-natal animal and human development, interactions between environmental and genetic factors, including environmental toxicants, and their influence on health and disease risk throughout the lifespan. JDOHaD publishes work on developmental programming, fetal and neonatal biology and physiology, early life nutrition, especially during the first 1,000 days of life, human ecology and evolution and Gene-Environment Interactions.
JDOHaD also accepts manuscripts that address the social determinants or education of health and disease risk as they relate to the early life period, as well as the economic and health care costs of a poor start to life. Accordingly, JDOHaD is multi-disciplinary, with contributions from basic scientists working in the fields of physiology, biochemistry and nutrition, endocrinology and metabolism, developmental biology, molecular biology/ epigenetics, human biology/ anthropology, and evolutionary developmental biology. Moreover clinicians, nutritionists, epidemiologists, social scientists, economists, public health specialists and policy makers are very welcome to submit manuscripts.
The journal includes original research articles, short communications and reviews, and has regular themed issues, with guest editors; it is also a platform for conference/workshop reports, and for opinion, comment and interaction.