Kelsey A Fletcher, Mai H Alkurashi, Andrew J Lindsay
{"title":"内体再循环抑制剂下调雄激素受体并与恩杂鲁胺协同作用。","authors":"Kelsey A Fletcher, Mai H Alkurashi, Andrew J Lindsay","doi":"10.1007/s10637-023-01407-x","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is the second most frequent cancer diagnosed in men, and accounts for one-fifth of cancer associated deaths worldwide. Despite the availability of effective prostate cancer therapies, if it is not cured by radical local treatment, progression to drug resistant metastatic prostate cancer is inevitable. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. We have recently published research demonstrating that targeting the endosomal recycling pathway, a membrane transport pathway that recycles internalised cell surface proteins back to the plasma membrane, may be a novel means to downregulate clinically relevant cell surface proteins and potentially overcome drug resistance. A reverse phase protein array (RPPA) assay of breast cancer cells treated with an endosomal recycling inhibitor identified the androgen receptor (AR) as one of the top downregulated proteins. We confirmed that endosomal recycling inhibitors also downregulated AR in prostate cancer cells and show that this occurs at the transcriptional level. We also found that endosomal recycling inhibitors synergise with enzalutamide, a standard-of-care therapy for prostate cancer. Our data suggest that combining recycling inhibitors with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":" ","pages":"14-23"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endosomal recycling inhibitors downregulate the androgen receptor and synergise with enzalutamide.\",\"authors\":\"Kelsey A Fletcher, Mai H Alkurashi, Andrew J Lindsay\",\"doi\":\"10.1007/s10637-023-01407-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer is the second most frequent cancer diagnosed in men, and accounts for one-fifth of cancer associated deaths worldwide. Despite the availability of effective prostate cancer therapies, if it is not cured by radical local treatment, progression to drug resistant metastatic prostate cancer is inevitable. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. We have recently published research demonstrating that targeting the endosomal recycling pathway, a membrane transport pathway that recycles internalised cell surface proteins back to the plasma membrane, may be a novel means to downregulate clinically relevant cell surface proteins and potentially overcome drug resistance. A reverse phase protein array (RPPA) assay of breast cancer cells treated with an endosomal recycling inhibitor identified the androgen receptor (AR) as one of the top downregulated proteins. We confirmed that endosomal recycling inhibitors also downregulated AR in prostate cancer cells and show that this occurs at the transcriptional level. We also found that endosomal recycling inhibitors synergise with enzalutamide, a standard-of-care therapy for prostate cancer. Our data suggest that combining recycling inhibitors with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.</p>\",\"PeriodicalId\":14513,\"journal\":{\"name\":\"Investigational New Drugs\",\"volume\":\" \",\"pages\":\"14-23\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigational New Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10637-023-01407-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-023-01407-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Endosomal recycling inhibitors downregulate the androgen receptor and synergise with enzalutamide.
Prostate cancer is the second most frequent cancer diagnosed in men, and accounts for one-fifth of cancer associated deaths worldwide. Despite the availability of effective prostate cancer therapies, if it is not cured by radical local treatment, progression to drug resistant metastatic prostate cancer is inevitable. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. We have recently published research demonstrating that targeting the endosomal recycling pathway, a membrane transport pathway that recycles internalised cell surface proteins back to the plasma membrane, may be a novel means to downregulate clinically relevant cell surface proteins and potentially overcome drug resistance. A reverse phase protein array (RPPA) assay of breast cancer cells treated with an endosomal recycling inhibitor identified the androgen receptor (AR) as one of the top downregulated proteins. We confirmed that endosomal recycling inhibitors also downregulated AR in prostate cancer cells and show that this occurs at the transcriptional level. We also found that endosomal recycling inhibitors synergise with enzalutamide, a standard-of-care therapy for prostate cancer. Our data suggest that combining recycling inhibitors with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.
期刊介绍:
The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.