Nahal Hadi, Sedigheh Nakhaeitazreji, Farshad Kakian, Zahra Hashemizadeh, Alireza Ebrahiminezhad, Jun Wei Roy Chong, Aydin Berenjian, Pau Loke Show
{"title":"铁包覆银纳米颗粒和头孢西丁作为抗耐甲氧西林金黄色葡萄球菌(MRSA)复合抗生素的优越性能:群体研究。","authors":"Nahal Hadi, Sedigheh Nakhaeitazreji, Farshad Kakian, Zahra Hashemizadeh, Alireza Ebrahiminezhad, Jun Wei Roy Chong, Aydin Berenjian, Pau Loke Show","doi":"10.1007/s12033-023-00957-y","DOIUrl":null,"url":null,"abstract":"<p><p>The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index < 0.5) between Fe@AgNPs and cefoxitin against 90% of MRSA infections, while an additive effect (0.5 ≤ FIC index ≤ 1) could be expected in 10% of infections. These results suggest that Fe@AgNPs could serve as an economically viable candidate for co-administration with antibiotics to reverse resistance in MRSA infections within skin lesions. Such findings may pave the way for the development of future treatment strategies against MRSA infections.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3573-3582"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior Performance of Iron-Coated Silver Nanoparticles and Cefoxitin as an Antibiotic Composite Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Population Study.\",\"authors\":\"Nahal Hadi, Sedigheh Nakhaeitazreji, Farshad Kakian, Zahra Hashemizadeh, Alireza Ebrahiminezhad, Jun Wei Roy Chong, Aydin Berenjian, Pau Loke Show\",\"doi\":\"10.1007/s12033-023-00957-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index < 0.5) between Fe@AgNPs and cefoxitin against 90% of MRSA infections, while an additive effect (0.5 ≤ FIC index ≤ 1) could be expected in 10% of infections. These results suggest that Fe@AgNPs could serve as an economically viable candidate for co-administration with antibiotics to reverse resistance in MRSA infections within skin lesions. Such findings may pave the way for the development of future treatment strategies against MRSA infections.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"3573-3582\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-023-00957-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00957-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Superior Performance of Iron-Coated Silver Nanoparticles and Cefoxitin as an Antibiotic Composite Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Population Study.
The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index < 0.5) between Fe@AgNPs and cefoxitin against 90% of MRSA infections, while an additive effect (0.5 ≤ FIC index ≤ 1) could be expected in 10% of infections. These results suggest that Fe@AgNPs could serve as an economically viable candidate for co-administration with antibiotics to reverse resistance in MRSA infections within skin lesions. Such findings may pave the way for the development of future treatment strategies against MRSA infections.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.