Manishkumar S. Tiwari, Dipti Wagh, Jennifer Sarah Dicks, John Keogh, Michela Ansaldi, Vivek V. Ranade and Haresh G. Manyar*,
{"title":"K-10催化剂负载锡交换钨磷酸,乙酰丙酸催化5-羟甲基糠醛(HMF)无溶剂升级制乙酰丙酸HMF","authors":"Manishkumar S. Tiwari, Dipti Wagh, Jennifer Sarah Dicks, John Keogh, Michela Ansaldi, Vivek V. Ranade and Haresh G. Manyar*, ","doi":"10.1021/acsorginorgau.2c00027","DOIUrl":null,"url":null,"abstract":"<p >The manufacture of high-value products from biomass derived platform chemicals is becoming an integral part of the biorefinery industry. In this study, we demonstrate a green catalytic process using solvent free conditions for the synthesis of hydroxymethylfurfural (HMF) levulinate from HMF and levulinic acid (LA) over tin exchanged tungstophosphoric acid (DTP) supported on K-10 (montmorillonite K-10 clay) as the catalyst. The structural properties of solid acid catalysts were characterized by using XRD, FT-IR, UV–vis, titration, and SEM techniques. Partial exchange of the H<sup>+</sup> of DTP with Sn (<i>x</i> = 1) resulted in enhanced acidity of the catalyst and showed an increase in the catalytic activity as compared to the unsubstituted DTP/K-10 as the catalyst. The effects of different reaction parameters were studied and optimized to get high yields of HMF levulinate. The kinetic model was developed by considering the Langmuir–Hinshelwood–Hougen–Watson (LHHW) mechanism, and the activation energy was calculated to be 41.2 kJ mol<sup>–1</sup>. The prepared catalysts were easily recycled up to four times without any noticeable loss of activity, and hot filtration test indicated the heterogeneous nature of the catalytic activity. The overall process is environmentally benign and suitable for easy scale up.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00027","citationCount":"4","resultStr":"{\"title\":\"Solvent Free Upgrading of 5-Hydroxymethylfurfural (HMF) with Levulinic Acid to HMF Levulinate Using Tin Exchanged Tungstophosphoric Acid Supported on K-10 Catalyst\",\"authors\":\"Manishkumar S. Tiwari, Dipti Wagh, Jennifer Sarah Dicks, John Keogh, Michela Ansaldi, Vivek V. Ranade and Haresh G. Manyar*, \",\"doi\":\"10.1021/acsorginorgau.2c00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The manufacture of high-value products from biomass derived platform chemicals is becoming an integral part of the biorefinery industry. In this study, we demonstrate a green catalytic process using solvent free conditions for the synthesis of hydroxymethylfurfural (HMF) levulinate from HMF and levulinic acid (LA) over tin exchanged tungstophosphoric acid (DTP) supported on K-10 (montmorillonite K-10 clay) as the catalyst. The structural properties of solid acid catalysts were characterized by using XRD, FT-IR, UV–vis, titration, and SEM techniques. Partial exchange of the H<sup>+</sup> of DTP with Sn (<i>x</i> = 1) resulted in enhanced acidity of the catalyst and showed an increase in the catalytic activity as compared to the unsubstituted DTP/K-10 as the catalyst. The effects of different reaction parameters were studied and optimized to get high yields of HMF levulinate. The kinetic model was developed by considering the Langmuir–Hinshelwood–Hougen–Watson (LHHW) mechanism, and the activation energy was calculated to be 41.2 kJ mol<sup>–1</sup>. The prepared catalysts were easily recycled up to four times without any noticeable loss of activity, and hot filtration test indicated the heterogeneous nature of the catalytic activity. The overall process is environmentally benign and suitable for easy scale up.</p>\",\"PeriodicalId\":29797,\"journal\":{\"name\":\"ACS Organic & Inorganic Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00027\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Organic & Inorganic Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solvent Free Upgrading of 5-Hydroxymethylfurfural (HMF) with Levulinic Acid to HMF Levulinate Using Tin Exchanged Tungstophosphoric Acid Supported on K-10 Catalyst
The manufacture of high-value products from biomass derived platform chemicals is becoming an integral part of the biorefinery industry. In this study, we demonstrate a green catalytic process using solvent free conditions for the synthesis of hydroxymethylfurfural (HMF) levulinate from HMF and levulinic acid (LA) over tin exchanged tungstophosphoric acid (DTP) supported on K-10 (montmorillonite K-10 clay) as the catalyst. The structural properties of solid acid catalysts were characterized by using XRD, FT-IR, UV–vis, titration, and SEM techniques. Partial exchange of the H+ of DTP with Sn (x = 1) resulted in enhanced acidity of the catalyst and showed an increase in the catalytic activity as compared to the unsubstituted DTP/K-10 as the catalyst. The effects of different reaction parameters were studied and optimized to get high yields of HMF levulinate. The kinetic model was developed by considering the Langmuir–Hinshelwood–Hougen–Watson (LHHW) mechanism, and the activation energy was calculated to be 41.2 kJ mol–1. The prepared catalysts were easily recycled up to four times without any noticeable loss of activity, and hot filtration test indicated the heterogeneous nature of the catalytic activity. The overall process is environmentally benign and suitable for easy scale up.
期刊介绍:
ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.