{"title":"子痫前期诱导的胎儿小鼠脑和肝脏基因表达和DNA甲基化模式的改变。","authors":"Naomi Hofsink, Dorieke J Dijkstra, Violeta Stojanovska, Sicco A Scherjon, Torsten Plösch","doi":"10.1017/S2040174422000344","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to pregnancy complications, including preeclampsia (PE), has lifelong influences on offspring's health. We have previously reported that experimental PE, induced in mice by administration of adenoviral sFlt1 at gestational day 8.5 combined with LPS at day 10.5, results in symmetrical growth restriction in female and asymmetrical growth restriction in male offspring. Here, we characterize the molecular phenotype of the fetal brain and liver with respect to gene transcription and DNA methylation at the end of gestation.In fetal brain and liver, expression and DNA methylation of several key regulatory genes is altered by PE exposure, mostly independent of fetal sex. These alterations point toward a decreased gluconeogenesis in the liver and stimulated neurogenesis in the brain, potentially affecting long-term brain and liver function. The observed sex-specific growth restriction pattern is not reflected in the molecular data, showing that PE, rather than tissue growth, drives the molecular phenotype of PE-exposed offspring.</p>","PeriodicalId":49167,"journal":{"name":"Journal of Developmental Origins of Health and Disease","volume":"14 1","pages":"146-151"},"PeriodicalIF":1.8000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preeclampsia-induced alterations in brain and liver gene expression and DNA methylation patterns in fetal mice.\",\"authors\":\"Naomi Hofsink, Dorieke J Dijkstra, Violeta Stojanovska, Sicco A Scherjon, Torsten Plösch\",\"doi\":\"10.1017/S2040174422000344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to pregnancy complications, including preeclampsia (PE), has lifelong influences on offspring's health. We have previously reported that experimental PE, induced in mice by administration of adenoviral sFlt1 at gestational day 8.5 combined with LPS at day 10.5, results in symmetrical growth restriction in female and asymmetrical growth restriction in male offspring. Here, we characterize the molecular phenotype of the fetal brain and liver with respect to gene transcription and DNA methylation at the end of gestation.In fetal brain and liver, expression and DNA methylation of several key regulatory genes is altered by PE exposure, mostly independent of fetal sex. These alterations point toward a decreased gluconeogenesis in the liver and stimulated neurogenesis in the brain, potentially affecting long-term brain and liver function. The observed sex-specific growth restriction pattern is not reflected in the molecular data, showing that PE, rather than tissue growth, drives the molecular phenotype of PE-exposed offspring.</p>\",\"PeriodicalId\":49167,\"journal\":{\"name\":\"Journal of Developmental Origins of Health and Disease\",\"volume\":\"14 1\",\"pages\":\"146-151\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Origins of Health and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S2040174422000344\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Origins of Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S2040174422000344","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Preeclampsia-induced alterations in brain and liver gene expression and DNA methylation patterns in fetal mice.
Exposure to pregnancy complications, including preeclampsia (PE), has lifelong influences on offspring's health. We have previously reported that experimental PE, induced in mice by administration of adenoviral sFlt1 at gestational day 8.5 combined with LPS at day 10.5, results in symmetrical growth restriction in female and asymmetrical growth restriction in male offspring. Here, we characterize the molecular phenotype of the fetal brain and liver with respect to gene transcription and DNA methylation at the end of gestation.In fetal brain and liver, expression and DNA methylation of several key regulatory genes is altered by PE exposure, mostly independent of fetal sex. These alterations point toward a decreased gluconeogenesis in the liver and stimulated neurogenesis in the brain, potentially affecting long-term brain and liver function. The observed sex-specific growth restriction pattern is not reflected in the molecular data, showing that PE, rather than tissue growth, drives the molecular phenotype of PE-exposed offspring.
期刊介绍:
JDOHaD publishes leading research in the field of Developmental Origins of Health and Disease (DOHaD). The Journal focuses on the environment during early pre-natal and post-natal animal and human development, interactions between environmental and genetic factors, including environmental toxicants, and their influence on health and disease risk throughout the lifespan. JDOHaD publishes work on developmental programming, fetal and neonatal biology and physiology, early life nutrition, especially during the first 1,000 days of life, human ecology and evolution and Gene-Environment Interactions.
JDOHaD also accepts manuscripts that address the social determinants or education of health and disease risk as they relate to the early life period, as well as the economic and health care costs of a poor start to life. Accordingly, JDOHaD is multi-disciplinary, with contributions from basic scientists working in the fields of physiology, biochemistry and nutrition, endocrinology and metabolism, developmental biology, molecular biology/ epigenetics, human biology/ anthropology, and evolutionary developmental biology. Moreover clinicians, nutritionists, epidemiologists, social scientists, economists, public health specialists and policy makers are very welcome to submit manuscripts.
The journal includes original research articles, short communications and reviews, and has regular themed issues, with guest editors; it is also a platform for conference/workshop reports, and for opinion, comment and interaction.