Marcell D Cadney, Ralph L Albuquerque, Nicole E Schwartz, Monica P McNamara, Alberto A Castro, Margaret P Schmill, David A Hillis, Theodore Garland
{"title":"早期自愿运动和果糖对成年小鼠活动水平、身体组成、有氧能力和器官质量的影响。","authors":"Marcell D Cadney, Ralph L Albuquerque, Nicole E Schwartz, Monica P McNamara, Alberto A Castro, Margaret P Schmill, David A Hillis, Theodore Garland","doi":"10.1017/S204017442200054X","DOIUrl":null,"url":null,"abstract":"<p><p>Fructose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>) is acutely obesogenic and is a risk factor for hypertension, cardiovascular disease, and nonalcoholic fatty liver disease. However, the possible long-lasting effects of early-life fructose consumption have not been studied. We tested for effects of early-life fructose and/or wheel access (voluntary exercise) in a line of selectively bred High Runner (HR) mice and a non-selected Control (C) line. Exposures began at weaning and continued for 3 weeks to sexual maturity, followed by a 23-week \"washout\" period (equivalent to ∼17 human years). Fructose increased total caloric intake, body mass, and body fat during juvenile exposure, but had no effect on juvenile wheel running and no important lasting effects on adult physical activity or body weight/composition. Interestingly, adult maximal aerobic capacity (VO<sub>2</sub>max) was reduced in mice that had early-life fructose and wheel access. Consistent with previous studies, early-life exercise promoted adult wheel running. In a 3-way interaction, C mice that had early-life fructose and no wheel access gained body mass in response to 2 weeks of adult wheel access, while all other groups lost mass. Overall, we found some long-lasting positive effects of early-life exercise, but minimal effects of early-life fructose, regardless of the mouse line.</p>","PeriodicalId":49167,"journal":{"name":"Journal of Developmental Origins of Health and Disease","volume":"14 2","pages":"249-260"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of early-life voluntary exercise and fructose on adult activity levels, body composition, aerobic capacity, and organ masses in mice bred for high voluntary wheel-running behavior.\",\"authors\":\"Marcell D Cadney, Ralph L Albuquerque, Nicole E Schwartz, Monica P McNamara, Alberto A Castro, Margaret P Schmill, David A Hillis, Theodore Garland\",\"doi\":\"10.1017/S204017442200054X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fructose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>) is acutely obesogenic and is a risk factor for hypertension, cardiovascular disease, and nonalcoholic fatty liver disease. However, the possible long-lasting effects of early-life fructose consumption have not been studied. We tested for effects of early-life fructose and/or wheel access (voluntary exercise) in a line of selectively bred High Runner (HR) mice and a non-selected Control (C) line. Exposures began at weaning and continued for 3 weeks to sexual maturity, followed by a 23-week \\\"washout\\\" period (equivalent to ∼17 human years). Fructose increased total caloric intake, body mass, and body fat during juvenile exposure, but had no effect on juvenile wheel running and no important lasting effects on adult physical activity or body weight/composition. Interestingly, adult maximal aerobic capacity (VO<sub>2</sub>max) was reduced in mice that had early-life fructose and wheel access. Consistent with previous studies, early-life exercise promoted adult wheel running. In a 3-way interaction, C mice that had early-life fructose and no wheel access gained body mass in response to 2 weeks of adult wheel access, while all other groups lost mass. Overall, we found some long-lasting positive effects of early-life exercise, but minimal effects of early-life fructose, regardless of the mouse line.</p>\",\"PeriodicalId\":49167,\"journal\":{\"name\":\"Journal of Developmental Origins of Health and Disease\",\"volume\":\"14 2\",\"pages\":\"249-260\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Origins of Health and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S204017442200054X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Origins of Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S204017442200054X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Effects of early-life voluntary exercise and fructose on adult activity levels, body composition, aerobic capacity, and organ masses in mice bred for high voluntary wheel-running behavior.
Fructose (C6H12O6) is acutely obesogenic and is a risk factor for hypertension, cardiovascular disease, and nonalcoholic fatty liver disease. However, the possible long-lasting effects of early-life fructose consumption have not been studied. We tested for effects of early-life fructose and/or wheel access (voluntary exercise) in a line of selectively bred High Runner (HR) mice and a non-selected Control (C) line. Exposures began at weaning and continued for 3 weeks to sexual maturity, followed by a 23-week "washout" period (equivalent to ∼17 human years). Fructose increased total caloric intake, body mass, and body fat during juvenile exposure, but had no effect on juvenile wheel running and no important lasting effects on adult physical activity or body weight/composition. Interestingly, adult maximal aerobic capacity (VO2max) was reduced in mice that had early-life fructose and wheel access. Consistent with previous studies, early-life exercise promoted adult wheel running. In a 3-way interaction, C mice that had early-life fructose and no wheel access gained body mass in response to 2 weeks of adult wheel access, while all other groups lost mass. Overall, we found some long-lasting positive effects of early-life exercise, but minimal effects of early-life fructose, regardless of the mouse line.
期刊介绍:
JDOHaD publishes leading research in the field of Developmental Origins of Health and Disease (DOHaD). The Journal focuses on the environment during early pre-natal and post-natal animal and human development, interactions between environmental and genetic factors, including environmental toxicants, and their influence on health and disease risk throughout the lifespan. JDOHaD publishes work on developmental programming, fetal and neonatal biology and physiology, early life nutrition, especially during the first 1,000 days of life, human ecology and evolution and Gene-Environment Interactions.
JDOHaD also accepts manuscripts that address the social determinants or education of health and disease risk as they relate to the early life period, as well as the economic and health care costs of a poor start to life. Accordingly, JDOHaD is multi-disciplinary, with contributions from basic scientists working in the fields of physiology, biochemistry and nutrition, endocrinology and metabolism, developmental biology, molecular biology/ epigenetics, human biology/ anthropology, and evolutionary developmental biology. Moreover clinicians, nutritionists, epidemiologists, social scientists, economists, public health specialists and policy makers are very welcome to submit manuscripts.
The journal includes original research articles, short communications and reviews, and has regular themed issues, with guest editors; it is also a platform for conference/workshop reports, and for opinion, comment and interaction.