Kimberly S Waggie, Lauren R Corulli, Denise Cecil, Erin R Rodmaker, Carissa Walsh, Mary L Disis
{"title":"高脂饮食和偶氮甲烷诱导结肠癌对C57BL/6J小鼠肝脏和肾脏的影响","authors":"Kimberly S Waggie, Lauren R Corulli, Denise Cecil, Erin R Rodmaker, Carissa Walsh, Mary L Disis","doi":"10.30802/AALAS-CM-22-000040","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple animal models have been developed to investigate the pathogenesis of colorectal cancer and to evaluate potential treatments. One model system uses azoxymethane, a metabolite of cycasin, alone and in conjunction with dextran sodium sulfate to induce colon cancer in rodents. Azoxymethane is metabolized by hepatic P450 enzymes and can also be eliminated through the kidneys. In this study, C57BL/6J mice were fed either standard or high-fat diet and then all mice received azoxymethane at 10 mg/kg body weight twice a week for 6 wk. Shortly after the end of treatment, high mortality occurred in mice in the high-fat diet group. Postmortem examination revealed hepatic and renal pathology in mice on both diets. Histologic changes in liver included hepatocytomegaly with nuclear pleomorphism and bile duct hyperplasia accompanied by mixed inflammatory-cell infiltrates. Changes in the kidneys ranged from basophilia of tubular epithelium to tubular atrophy. The results indicate that further optimization of this model is needed when feeding a high-fat diet and giving multiple azoxymethane doses to induce colon cancer in C57BL/6J mice.</p>","PeriodicalId":10659,"journal":{"name":"Comparative medicine","volume":"72 5","pages":"330-335"},"PeriodicalIF":1.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827600/pdf/cm2022000330.pdf","citationCount":"0","resultStr":"{\"title\":\"Unexpected Liver and Kidney Pathology in C57BL/6J Mice Fed a High-fat Diet and Given Azoxymethane to Induce Colon Cancer.\",\"authors\":\"Kimberly S Waggie, Lauren R Corulli, Denise Cecil, Erin R Rodmaker, Carissa Walsh, Mary L Disis\",\"doi\":\"10.30802/AALAS-CM-22-000040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple animal models have been developed to investigate the pathogenesis of colorectal cancer and to evaluate potential treatments. One model system uses azoxymethane, a metabolite of cycasin, alone and in conjunction with dextran sodium sulfate to induce colon cancer in rodents. Azoxymethane is metabolized by hepatic P450 enzymes and can also be eliminated through the kidneys. In this study, C57BL/6J mice were fed either standard or high-fat diet and then all mice received azoxymethane at 10 mg/kg body weight twice a week for 6 wk. Shortly after the end of treatment, high mortality occurred in mice in the high-fat diet group. Postmortem examination revealed hepatic and renal pathology in mice on both diets. Histologic changes in liver included hepatocytomegaly with nuclear pleomorphism and bile duct hyperplasia accompanied by mixed inflammatory-cell infiltrates. Changes in the kidneys ranged from basophilia of tubular epithelium to tubular atrophy. The results indicate that further optimization of this model is needed when feeding a high-fat diet and giving multiple azoxymethane doses to induce colon cancer in C57BL/6J mice.</p>\",\"PeriodicalId\":10659,\"journal\":{\"name\":\"Comparative medicine\",\"volume\":\"72 5\",\"pages\":\"330-335\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827600/pdf/cm2022000330.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.30802/AALAS-CM-22-000040\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-CM-22-000040","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Unexpected Liver and Kidney Pathology in C57BL/6J Mice Fed a High-fat Diet and Given Azoxymethane to Induce Colon Cancer.
Multiple animal models have been developed to investigate the pathogenesis of colorectal cancer and to evaluate potential treatments. One model system uses azoxymethane, a metabolite of cycasin, alone and in conjunction with dextran sodium sulfate to induce colon cancer in rodents. Azoxymethane is metabolized by hepatic P450 enzymes and can also be eliminated through the kidneys. In this study, C57BL/6J mice were fed either standard or high-fat diet and then all mice received azoxymethane at 10 mg/kg body weight twice a week for 6 wk. Shortly after the end of treatment, high mortality occurred in mice in the high-fat diet group. Postmortem examination revealed hepatic and renal pathology in mice on both diets. Histologic changes in liver included hepatocytomegaly with nuclear pleomorphism and bile duct hyperplasia accompanied by mixed inflammatory-cell infiltrates. Changes in the kidneys ranged from basophilia of tubular epithelium to tubular atrophy. The results indicate that further optimization of this model is needed when feeding a high-fat diet and giving multiple azoxymethane doses to induce colon cancer in C57BL/6J mice.
期刊介绍:
Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.