再生障碍性贫血的自身免疫发病机制、免疫抑制治疗及药理机制。

IF 4.8 2区 医学 Q2 IMMUNOLOGY International immunopharmacology Pub Date : 2023-04-01 DOI:10.1016/j.intimp.2023.110036
Pengpeng Pan, Congcong Chen, Jian Hong, Yue Gu
{"title":"再生障碍性贫血的自身免疫发病机制、免疫抑制治疗及药理机制。","authors":"Pengpeng Pan,&nbsp;Congcong Chen,&nbsp;Jian Hong,&nbsp;Yue Gu","doi":"10.1016/j.intimp.2023.110036","DOIUrl":null,"url":null,"abstract":"<p><p>Acquired aplastic anemia (AA) is an autoimmune disease of bone marrow failure mediated by abnormally activated T cells, manifested by severe depletion of hematopoietic stem and progenitor cells (HSPCs) and peripheral blood cells. Due to the limitation of donors for hematopoietic stem cell transplantation, immunosuppressive therapy (IST) is currently an effective first-line treatment. However, a significant proportion of AA patients remain ineligible for IST, relapse, and develop other hematologic malignancies, such as acute myeloid leukemia after IST. Therefore, it is important to elucidate the pathogenic mechanisms of AA and to identify treatable molecular targets, which is an attractive way to improve these outcomes. In this review, we summarize the immune-related pathogenesis of AA, pharmacological targets, and clinical effects of the current mainstream immunosuppressive agents. It provides new insight into the combination of immunosuppressive drugs with multiple targets, as well as the discovery of new druggable targets based on current intervention pathways.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Autoimmune pathogenesis, immunosuppressive therapy and pharmacological mechanism in aplastic anemia.\",\"authors\":\"Pengpeng Pan,&nbsp;Congcong Chen,&nbsp;Jian Hong,&nbsp;Yue Gu\",\"doi\":\"10.1016/j.intimp.2023.110036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acquired aplastic anemia (AA) is an autoimmune disease of bone marrow failure mediated by abnormally activated T cells, manifested by severe depletion of hematopoietic stem and progenitor cells (HSPCs) and peripheral blood cells. Due to the limitation of donors for hematopoietic stem cell transplantation, immunosuppressive therapy (IST) is currently an effective first-line treatment. However, a significant proportion of AA patients remain ineligible for IST, relapse, and develop other hematologic malignancies, such as acute myeloid leukemia after IST. Therefore, it is important to elucidate the pathogenic mechanisms of AA and to identify treatable molecular targets, which is an attractive way to improve these outcomes. In this review, we summarize the immune-related pathogenesis of AA, pharmacological targets, and clinical effects of the current mainstream immunosuppressive agents. It provides new insight into the combination of immunosuppressive drugs with multiple targets, as well as the discovery of new druggable targets based on current intervention pathways.</p>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.intimp.2023.110036\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2023.110036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

获得性再生障碍性贫血(AA)是一种由异常活化的T细胞介导的骨髓衰竭的自身免疫性疾病,表现为造血干细胞和祖细胞(HSPCs)和外周血细胞的严重耗竭。由于造血干细胞移植供体的限制,免疫抑制疗法(IST)是目前有效的一线治疗方法。然而,相当比例的AA患者仍然不适合IST,复发,并在IST后发展为其他血液系统恶性肿瘤,如急性髓系白血病。因此,阐明AA的致病机制和确定可治疗的分子靶点是改善这些结果的重要途径。本文就AA的免疫相关发病机制、目前主流免疫抑制剂的药理靶点及临床疗效进行综述。它为免疫抑制药物与多靶点的组合提供了新的见解,以及基于当前干预途径发现新的可药物靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autoimmune pathogenesis, immunosuppressive therapy and pharmacological mechanism in aplastic anemia.

Acquired aplastic anemia (AA) is an autoimmune disease of bone marrow failure mediated by abnormally activated T cells, manifested by severe depletion of hematopoietic stem and progenitor cells (HSPCs) and peripheral blood cells. Due to the limitation of donors for hematopoietic stem cell transplantation, immunosuppressive therapy (IST) is currently an effective first-line treatment. However, a significant proportion of AA patients remain ineligible for IST, relapse, and develop other hematologic malignancies, such as acute myeloid leukemia after IST. Therefore, it is important to elucidate the pathogenic mechanisms of AA and to identify treatable molecular targets, which is an attractive way to improve these outcomes. In this review, we summarize the immune-related pathogenesis of AA, pharmacological targets, and clinical effects of the current mainstream immunosuppressive agents. It provides new insight into the combination of immunosuppressive drugs with multiple targets, as well as the discovery of new druggable targets based on current intervention pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
期刊最新文献
Corrigendum to "Betulinic acid isolated from Bacopa monniera (L.) Wettst suppresses lipopolysaccharide stimulated interleukin-6 production through modulation of nuclear factor-κB in peripheral blood mononuclear cells" [Int. Immunopharmacol. 10/8 (2010) 843-849]. Corrigendum to "Icosapent ethyl alleviates acetic acid-induced ulcerative colitis via modulation of SIRT1 signaling pathway in rats" [Int. Immunopharmacol. 115 (2023) 109621]. Corrigendum to "Maackiain protects against sepsis via activating AMPK/Nrf2/HO-1 pathway" [Int. Immunopharmacol. 108 (2022) 108710]. Erratum to "Auraptene-ameliorating depressive-like behaviors induced by lipopolysaccharide combined with chronic unpredictable mild stress in mice mitigate hippocampal neuroinflammation mediated by microglia" [Int. Immunopharmacol. 136 (2024) 112330]. Macrophage α7nAChR alleviates the inflammation of neonatal necrotizing enterocolitis through mTOR/NLRP3/IL-1β pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1