无异源质粒和耐药基因的稳定产乙醇菌株的设计,用于从浓缩乳制品废物中高效生产乙醇。

Lorenzo Pasotti, Davide De Marchi, Michela Casanova, Angelica Frusteri Chiacchiera, Maria Gabriella Cusella De Angelis, Cinzia Calvio, Paolo Magni
{"title":"无异源质粒和耐药基因的稳定产乙醇菌株的设计,用于从浓缩乳制品废物中高效生产乙醇。","authors":"Lorenzo Pasotti,&nbsp;Davide De Marchi,&nbsp;Michela Casanova,&nbsp;Angelica Frusteri Chiacchiera,&nbsp;Maria Gabriella Cusella De Angelis,&nbsp;Cinzia Calvio,&nbsp;Paolo Magni","doi":"10.1186/s13068-023-02298-z","DOIUrl":null,"url":null,"abstract":"<p><p>Engineering sustainable bioprocesses that convert abundant waste into fuels is pivotal for efficient production of renewable energy. We previously engineered an Escherichia coli strain for optimized bioethanol production from lactose-rich wastewater like concentrated whey permeate (CWP), a dairy effluent obtained from whey valorization processes. Although attractive fermentation performances were reached, significant improvements are required to eliminate recombinant plasmids, antibiotic resistances and inducible promoters, and increase ethanol tolerance. Here, we report a new strain with chromosomally integrated ethanologenic pathway under the control of a constitutive promoter, without recombinant plasmids and resistance genes. The strain showed extreme stability in 1-month subculturing, with CWP fermentation performances similar to the ethanologenic plasmid-bearing strain. We then investigated conditions enabling efficient ethanol production and sugar consumption by changing inoculum size and CWP concentration, revealing toxicity- and nutritional-related bottlenecks. The joint increase of ethanol tolerance, via adaptive evolution, and supplementation of small ammonium sulphate amounts (0.05% w/v) enabled a fermentation boost with 6.6% v/v ethanol titer, 1.2 g/L/h rate, 82.5% yield, and cell viability increased by three orders of magnitude. Our strain has attractive features for industrial settings and represents a relevant improvement in the existing ethanol production biotechnologies.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":"16 1","pages":"57"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067303/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design of a stable ethanologenic bacterial strain without heterologous plasmids and antibiotic resistance genes for efficient ethanol production from concentrated dairy waste.\",\"authors\":\"Lorenzo Pasotti,&nbsp;Davide De Marchi,&nbsp;Michela Casanova,&nbsp;Angelica Frusteri Chiacchiera,&nbsp;Maria Gabriella Cusella De Angelis,&nbsp;Cinzia Calvio,&nbsp;Paolo Magni\",\"doi\":\"10.1186/s13068-023-02298-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Engineering sustainable bioprocesses that convert abundant waste into fuels is pivotal for efficient production of renewable energy. We previously engineered an Escherichia coli strain for optimized bioethanol production from lactose-rich wastewater like concentrated whey permeate (CWP), a dairy effluent obtained from whey valorization processes. Although attractive fermentation performances were reached, significant improvements are required to eliminate recombinant plasmids, antibiotic resistances and inducible promoters, and increase ethanol tolerance. Here, we report a new strain with chromosomally integrated ethanologenic pathway under the control of a constitutive promoter, without recombinant plasmids and resistance genes. The strain showed extreme stability in 1-month subculturing, with CWP fermentation performances similar to the ethanologenic plasmid-bearing strain. We then investigated conditions enabling efficient ethanol production and sugar consumption by changing inoculum size and CWP concentration, revealing toxicity- and nutritional-related bottlenecks. The joint increase of ethanol tolerance, via adaptive evolution, and supplementation of small ammonium sulphate amounts (0.05% w/v) enabled a fermentation boost with 6.6% v/v ethanol titer, 1.2 g/L/h rate, 82.5% yield, and cell viability increased by three orders of magnitude. Our strain has attractive features for industrial settings and represents a relevant improvement in the existing ethanol production biotechnologies.</p>\",\"PeriodicalId\":9125,\"journal\":{\"name\":\"Biotechnology for Biofuels and Bioproducts\",\"volume\":\"16 1\",\"pages\":\"57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067303/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13068-023-02298-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-023-02298-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将大量废物转化为燃料的工程可持续生物过程对于有效生产可再生能源至关重要。我们之前设计了一种大肠杆菌菌株,用于优化从富含乳糖的废水(如浓缩乳清渗透物(CWP))中生产生物乙醇,浓缩乳清渗透物是乳清固化过程中获得的一种乳制品废水。虽然达到了令人满意的发酵性能,但需要进行重大改进,以消除重组质粒、抗生素耐药性和诱导启动子,并提高乙醇耐受性。在这里,我们报道了一个新的菌株,在一个组成型启动子的控制下,染色体整合的乙醇生成途径,没有重组质粒和抗性基因。该菌株在1个月的传代培养中表现出极高的稳定性,其CWP发酵性能与乙醇质粒承载菌株相似。然后,我们研究了通过改变接种量和CWP浓度来实现高效乙醇生产和糖消耗的条件,揭示了毒性和营养相关的瓶颈。通过适应进化提高乙醇耐受性,并添加少量硫酸铵(0.05% w/v),使发酵提高6.6% v/v的乙醇滴度,1.2 g/L/h的速率,82.5%的产量,细胞活力提高了三个数量级。我们的菌株对工业环境有吸引力的特点,代表了现有乙醇生产生物技术的相关改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a stable ethanologenic bacterial strain without heterologous plasmids and antibiotic resistance genes for efficient ethanol production from concentrated dairy waste.

Engineering sustainable bioprocesses that convert abundant waste into fuels is pivotal for efficient production of renewable energy. We previously engineered an Escherichia coli strain for optimized bioethanol production from lactose-rich wastewater like concentrated whey permeate (CWP), a dairy effluent obtained from whey valorization processes. Although attractive fermentation performances were reached, significant improvements are required to eliminate recombinant plasmids, antibiotic resistances and inducible promoters, and increase ethanol tolerance. Here, we report a new strain with chromosomally integrated ethanologenic pathway under the control of a constitutive promoter, without recombinant plasmids and resistance genes. The strain showed extreme stability in 1-month subculturing, with CWP fermentation performances similar to the ethanologenic plasmid-bearing strain. We then investigated conditions enabling efficient ethanol production and sugar consumption by changing inoculum size and CWP concentration, revealing toxicity- and nutritional-related bottlenecks. The joint increase of ethanol tolerance, via adaptive evolution, and supplementation of small ammonium sulphate amounts (0.05% w/v) enabled a fermentation boost with 6.6% v/v ethanol titer, 1.2 g/L/h rate, 82.5% yield, and cell viability increased by three orders of magnitude. Our strain has attractive features for industrial settings and represents a relevant improvement in the existing ethanol production biotechnologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alanine dehydrogenases from four different microorganisms: characterization and their application in L-alanine production. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons. Correction: Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation. Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1