Thiram是11ß-羟基类固醇脱氢酶2型抑制剂,通过Wnt/β-catenin通路增强氢化可的松治疗骨肉瘤的抑制作用。

IF 2.8 3区 医学 Q2 PHARMACOLOGY & PHARMACY BMC Pharmacology & Toxicology Pub Date : 2023-03-28 DOI:10.1186/s40360-023-00655-0
You Zhang, Nanjing Li, He Li, Maojia Chen, Wei Jiang, Wenhao Guo
{"title":"Thiram是11ß-羟基类固醇脱氢酶2型抑制剂,通过Wnt/β-catenin通路增强氢化可的松治疗骨肉瘤的抑制作用。","authors":"You Zhang,&nbsp;Nanjing Li,&nbsp;He Li,&nbsp;Maojia Chen,&nbsp;Wei Jiang,&nbsp;Wenhao Guo","doi":"10.1186/s40360-023-00655-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The anti-osteosarcoma effects of hydrocortisone and thiram, an inhibitor of type 2 11ß-hydroxysteroid dehydrogenase (11HSD2), have not been reported. The purpose of this study was to investigate the effects of hydrocortisone alone or the combination of hydrocortisone with thiram on osteosarcoma and the molecular mechanism, and determine whether they can be as new therapeutic agents for osteosarcoma.</p><p><strong>Methods: </strong>Normal bone cells and osteosarcoma cells were treated with hydrocortisone or thiram alone or in combination. The cell proliferation, migration, cell cycle and apoptosis were detected by using CCK8 assay, wound healing assay, and flow cytometry, respectively. An osteosarcoma mouse model was established. The effect of drugs on osteosarcoma in vivo was assessed by measuring tumor volume. Transcriptome sequencing, bioinformatics analysis, RT-qPCR, Western blotting (WB), enzymelinked immunosorbent assay (ELISA) and siRNA transfection were performed to determine the molecular mechanisms.</p><p><strong>Results: </strong>Hydrocortisone inhibited the proliferation and migration, and induced apoptosis and cell cycle arrest of osteosarcoma cells in vitro. Hydrocortisone also reduced the volume of osteosarcoma in mice in vivo. Mechanistically, hydrocortisone decreased the levels of Wnt/β-catenin pathway-associated proteins, and induced the expression of glucocorticoid receptor α (GCR), CCAAT enhancer-binding protein β (C/EBP-beta) and 11HSD2, resulting in a hydrocortisone resistance loop. Thiram inhibited the activity of the 11HSD2 enzyme, the combination of thiram and hydrocortisone further enhanced the inhibition of osteosarcoma through Wnt/β-catenin pathway.</p><p><strong>Conclusions: </strong>Hydrocortisone inhibits osteosarcoma through the Wnt/β-catenin pathway. Thiram inhibits 11HSD2 enzyme activity, reducing hydrocortisone inactivation and promoting the effect of hydrocortisone through the same pathway.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045229/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thiram, an inhibitor of 11ß-hydroxysteroid dehydrogenase type 2, enhances the inhibitory effects of hydrocortisone in the treatment of osteosarcoma through Wnt/β-catenin pathway.\",\"authors\":\"You Zhang,&nbsp;Nanjing Li,&nbsp;He Li,&nbsp;Maojia Chen,&nbsp;Wei Jiang,&nbsp;Wenhao Guo\",\"doi\":\"10.1186/s40360-023-00655-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The anti-osteosarcoma effects of hydrocortisone and thiram, an inhibitor of type 2 11ß-hydroxysteroid dehydrogenase (11HSD2), have not been reported. The purpose of this study was to investigate the effects of hydrocortisone alone or the combination of hydrocortisone with thiram on osteosarcoma and the molecular mechanism, and determine whether they can be as new therapeutic agents for osteosarcoma.</p><p><strong>Methods: </strong>Normal bone cells and osteosarcoma cells were treated with hydrocortisone or thiram alone or in combination. The cell proliferation, migration, cell cycle and apoptosis were detected by using CCK8 assay, wound healing assay, and flow cytometry, respectively. An osteosarcoma mouse model was established. The effect of drugs on osteosarcoma in vivo was assessed by measuring tumor volume. Transcriptome sequencing, bioinformatics analysis, RT-qPCR, Western blotting (WB), enzymelinked immunosorbent assay (ELISA) and siRNA transfection were performed to determine the molecular mechanisms.</p><p><strong>Results: </strong>Hydrocortisone inhibited the proliferation and migration, and induced apoptosis and cell cycle arrest of osteosarcoma cells in vitro. Hydrocortisone also reduced the volume of osteosarcoma in mice in vivo. Mechanistically, hydrocortisone decreased the levels of Wnt/β-catenin pathway-associated proteins, and induced the expression of glucocorticoid receptor α (GCR), CCAAT enhancer-binding protein β (C/EBP-beta) and 11HSD2, resulting in a hydrocortisone resistance loop. Thiram inhibited the activity of the 11HSD2 enzyme, the combination of thiram and hydrocortisone further enhanced the inhibition of osteosarcoma through Wnt/β-catenin pathway.</p><p><strong>Conclusions: </strong>Hydrocortisone inhibits osteosarcoma through the Wnt/β-catenin pathway. Thiram inhibits 11HSD2 enzyme activity, reducing hydrocortisone inactivation and promoting the effect of hydrocortisone through the same pathway.</p>\",\"PeriodicalId\":9023,\"journal\":{\"name\":\"BMC Pharmacology & Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pharmacology & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40360-023-00655-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-023-00655-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:氢化可的松和2 11ß-羟基类固醇脱氢酶(11HSD2)抑制剂thiram抗骨肉瘤的作用尚未见报道。本研究的目的是探讨氢化可的松单用或氢化可的松与西美姆合用对骨肉瘤的影响及其分子机制,以确定它们是否可以作为骨肉瘤的新治疗药物。方法:采用氢化可的松或西美姆单独或联合治疗正常骨细胞和骨肉瘤细胞。分别采用CCK8法、创面愈合法和流式细胞术检测细胞增殖、细胞迁移、细胞周期和细胞凋亡。建立小鼠骨肉瘤模型。通过测量肿瘤体积来评估药物对体内骨肉瘤的作用。通过转录组测序、生物信息学分析、RT-qPCR、Western blotting (WB)、酶联免疫吸附试验(ELISA)和siRNA转染来确定其分子机制。结果:氢化可的松能抑制骨肉瘤细胞的增殖和迁移,诱导骨肉瘤细胞凋亡和细胞周期阻滞。氢化可的松还能减少小鼠体内骨肉瘤的体积。机制上,氢化可的松降低Wnt/β-catenin通路相关蛋白水平,诱导糖皮质激素受体α (GCR)、CCAAT增强子结合蛋白β (C/EBP-beta)和11HSD2的表达,形成氢化可的松耐药环。Thiram抑制11HSD2酶的活性,Thiram与氢化可的松联用通过Wnt/β-catenin途径进一步增强对骨肉瘤的抑制作用。结论:氢化可的松通过Wnt/β-catenin通路抑制骨肉瘤。Thiram抑制11HSD2酶活性,通过相同的途径减少氢化可的松失活,促进氢化可的松的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thiram, an inhibitor of 11ß-hydroxysteroid dehydrogenase type 2, enhances the inhibitory effects of hydrocortisone in the treatment of osteosarcoma through Wnt/β-catenin pathway.

Background: The anti-osteosarcoma effects of hydrocortisone and thiram, an inhibitor of type 2 11ß-hydroxysteroid dehydrogenase (11HSD2), have not been reported. The purpose of this study was to investigate the effects of hydrocortisone alone or the combination of hydrocortisone with thiram on osteosarcoma and the molecular mechanism, and determine whether they can be as new therapeutic agents for osteosarcoma.

Methods: Normal bone cells and osteosarcoma cells were treated with hydrocortisone or thiram alone or in combination. The cell proliferation, migration, cell cycle and apoptosis were detected by using CCK8 assay, wound healing assay, and flow cytometry, respectively. An osteosarcoma mouse model was established. The effect of drugs on osteosarcoma in vivo was assessed by measuring tumor volume. Transcriptome sequencing, bioinformatics analysis, RT-qPCR, Western blotting (WB), enzymelinked immunosorbent assay (ELISA) and siRNA transfection were performed to determine the molecular mechanisms.

Results: Hydrocortisone inhibited the proliferation and migration, and induced apoptosis and cell cycle arrest of osteosarcoma cells in vitro. Hydrocortisone also reduced the volume of osteosarcoma in mice in vivo. Mechanistically, hydrocortisone decreased the levels of Wnt/β-catenin pathway-associated proteins, and induced the expression of glucocorticoid receptor α (GCR), CCAAT enhancer-binding protein β (C/EBP-beta) and 11HSD2, resulting in a hydrocortisone resistance loop. Thiram inhibited the activity of the 11HSD2 enzyme, the combination of thiram and hydrocortisone further enhanced the inhibition of osteosarcoma through Wnt/β-catenin pathway.

Conclusions: Hydrocortisone inhibits osteosarcoma through the Wnt/β-catenin pathway. Thiram inhibits 11HSD2 enzyme activity, reducing hydrocortisone inactivation and promoting the effect of hydrocortisone through the same pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Pharmacology & Toxicology
BMC Pharmacology & Toxicology PHARMACOLOGY & PHARMACYTOXICOLOGY&nb-TOXICOLOGY
CiteScore
4.80
自引率
0.00%
发文量
87
审稿时长
12 weeks
期刊介绍: BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.
期刊最新文献
Sodium Houttuyniae attenuates ferroptosis by regulating TRAF6-c-Myc signaling pathways in lipopolysaccharide-induced acute lung injury (ALI). The subchronic toxicity of higher olefins in Han Wistar rats. Appropriate use of triazolam in elderly patients considering a quantitative benefit-risk assessment based on the pharmacokinetic-pharmacodynamic modeling and simulation approach supported by real-world data. Comparison of the efficacy and adverse effects of oral ferrous succinate tablets and intravenous iron sucrose: a retrospective study. Drug-induced liver injury associated with atypical generation antipsychotics from the FDA Adverse Event Reporting System (FAERS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1