{"title":"精准心脏病学中心力衰竭的循环代谢特征。","authors":"Huijing Xie, Bowen Zhang, Maodi Xie, Tao Li","doi":"10.1093/pcmedi/pbad005","DOIUrl":null,"url":null,"abstract":"<p><p>Precision cardiology aims to implement personalized health care and precise medical decisions based on the specific characteristics of individuals. Metabolic remodeling plays a causal role in the pathogenesis of heart failure (HF). Changes in metabolic pathways such as substrate preference, high-energy phosphate metabolism and amino acid metabolism, are involved in pathological structural remodeling and functional impairment. These metabolic alterations are usually not restricted in the cardiac tissue, but also manifest in circulation. In clinical practice, blood sample is routinely used for HF screening. Metabolomics is an emerging omics technology that provides an efficient way to acquire dynamic metabolic profiles in circulation. An increasing number of metabolic biomarkers have been implicated in disease progression, making it possible to fight HF in a more effective and precise way. This review summarizes the modern analytical techniques in metabolomics as well as emerging circulating metabolites during the pathogenesis of HF, aiming to provide new insights into the prevention, diagnosis and treatment of HF in the era of precision medicine.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"6 1","pages":"pbad005"},"PeriodicalIF":5.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a1/7e/pbad005.PMC10068425.pdf","citationCount":"1","resultStr":"{\"title\":\"Circulating metabolic signatures of heart failure in precision cardiology.\",\"authors\":\"Huijing Xie, Bowen Zhang, Maodi Xie, Tao Li\",\"doi\":\"10.1093/pcmedi/pbad005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precision cardiology aims to implement personalized health care and precise medical decisions based on the specific characteristics of individuals. Metabolic remodeling plays a causal role in the pathogenesis of heart failure (HF). Changes in metabolic pathways such as substrate preference, high-energy phosphate metabolism and amino acid metabolism, are involved in pathological structural remodeling and functional impairment. These metabolic alterations are usually not restricted in the cardiac tissue, but also manifest in circulation. In clinical practice, blood sample is routinely used for HF screening. Metabolomics is an emerging omics technology that provides an efficient way to acquire dynamic metabolic profiles in circulation. An increasing number of metabolic biomarkers have been implicated in disease progression, making it possible to fight HF in a more effective and precise way. This review summarizes the modern analytical techniques in metabolomics as well as emerging circulating metabolites during the pathogenesis of HF, aiming to provide new insights into the prevention, diagnosis and treatment of HF in the era of precision medicine.</p>\",\"PeriodicalId\":33608,\"journal\":{\"name\":\"Precision Clinical Medicine\",\"volume\":\"6 1\",\"pages\":\"pbad005\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a1/7e/pbad005.PMC10068425.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Clinical Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/pcmedi/pbad005\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbad005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Circulating metabolic signatures of heart failure in precision cardiology.
Precision cardiology aims to implement personalized health care and precise medical decisions based on the specific characteristics of individuals. Metabolic remodeling plays a causal role in the pathogenesis of heart failure (HF). Changes in metabolic pathways such as substrate preference, high-energy phosphate metabolism and amino acid metabolism, are involved in pathological structural remodeling and functional impairment. These metabolic alterations are usually not restricted in the cardiac tissue, but also manifest in circulation. In clinical practice, blood sample is routinely used for HF screening. Metabolomics is an emerging omics technology that provides an efficient way to acquire dynamic metabolic profiles in circulation. An increasing number of metabolic biomarkers have been implicated in disease progression, making it possible to fight HF in a more effective and precise way. This review summarizes the modern analytical techniques in metabolomics as well as emerging circulating metabolites during the pathogenesis of HF, aiming to provide new insights into the prevention, diagnosis and treatment of HF in the era of precision medicine.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.