不对称组蛋白遗传:建立、识别和执行。

IF 8.7 1区 生物学 Q1 GENETICS & HEREDITY Annual review of genetics Pub Date : 2022-11-30 DOI:10.1146/annurev-genet-072920-125226
Jennifer A Urban, Rajesh Ranjan, Xin Chen
{"title":"不对称组蛋白遗传:建立、识别和执行。","authors":"Jennifer A Urban,&nbsp;Rajesh Ranjan,&nbsp;Xin Chen","doi":"10.1146/annurev-genet-072920-125226","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of biased histone inheritance in asymmetrically dividing <i>Drosophila melanogaster</i> male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"56 ","pages":"113-143"},"PeriodicalIF":8.7000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054593/pdf/nihms-1881686.pdf","citationCount":"1","resultStr":"{\"title\":\"Asymmetric Histone Inheritance: Establishment, Recognition, and Execution.\",\"authors\":\"Jennifer A Urban,&nbsp;Rajesh Ranjan,&nbsp;Xin Chen\",\"doi\":\"10.1146/annurev-genet-072920-125226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discovery of biased histone inheritance in asymmetrically dividing <i>Drosophila melanogaster</i> male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.</p>\",\"PeriodicalId\":8035,\"journal\":{\"name\":\"Annual review of genetics\",\"volume\":\"56 \",\"pages\":\"113-143\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054593/pdf/nihms-1881686.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genet-072920-125226\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-072920-125226","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

摘要

在不对称分裂的黑腹果蝇雄性生殖系干细胞中发现了偏向的组蛋白遗传,证明了一种产生具有相同遗传物质的两个不同子细胞的方法。这启发了在不同系统中的进一步研究,揭示了这种现象可能是引入细胞多样性的广泛机制。虽然组蛋白不对称遗传的程度在不同的系统中可能有所不同,但这种现象可能发生在三个步骤中:首先,在DNA复制过程中姐妹染色单体之间建立组蛋白不对称;其次,在有丝分裂过程中识别携带不对称组蛋白信息的姐妹染色单体;第三,在产生的子细胞中执行这种不对称。通过汇编来自不同真核系统的现有知识,本文全面详细介绍并比较了可能对这三个步骤有贡献的已知染色质因子、有丝分裂机制成分和细胞周期调节因子。还讨论了引入和调节可变组蛋白遗传模式的潜在机制,以及这些不同模式如何影响多细胞生物的细胞命运决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymmetric Histone Inheritance: Establishment, Recognition, and Execution.

The discovery of biased histone inheritance in asymmetrically dividing Drosophila melanogaster male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of genetics
Annual review of genetics 生物-遗传学
CiteScore
18.30
自引率
0.90%
发文量
17
期刊介绍: The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.
期刊最新文献
The Prokaryotic Roots of Eukaryotic Immune Systems The Nature and Nurture of Extracellular Vesicle-Mediated Signaling. Cellular, Molecular, and Genetic Mechanisms of Avian Beak Development and Evolution. Integrating the Study of Polyploidy Across Organisms, Tissues, and Disease. Placental Evolution: Innovating how to Feed Babies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1