{"title":"阿尔及利亚肖特古菌群落多样性评价。","authors":"Imene Ikram Hassani, Inès Quadri, Archana Yadav, Sonia Bouchard, Didier Raoult, Hocine Hacène, Christelle Desnues","doi":"10.1007/s00792-022-01287-8","DOIUrl":null,"url":null,"abstract":"<p><p>Halophilic archaea are the dominant type of microorganisms in hypersaline environments. The diversity of halophilic archaea in Zehrez-Chergui (Saharian chott) was analyzed and compared by both analysis of a library of PCR amplified 16S rRNA genes and by cultivation approach. This work, represents the first of its type in Algeria. A total cell count was estimated at 3.8 × 10<sup>3</sup> CFU/g. The morphological, biochemical, and physiological characterizations of 45 distinct strains, suggests that all of them might be members of the class Halobacteria. Among stains, 23 were characterized phylogenetically and are related to 6 genera of halophilic archaea.The dominance of the genus Halopiger, has not been reported yet in other hypersaline environments. The 100 clones obtained by the molecular approach, were sequenced, and analyzed. The ribosomal library of 61 OTUs showed that the archaeal diversity included uncultured haloarcheon, Halomicrobium, Natronomonas, Halomicroarcula, Halapricum, Haloarcula, Halosimplex, Haloterrigena, Halolamina, Halorubellus, Halorussus and Halonotius. The results of rarefaction analysis indicated that the analysis of an increasing number of clones would have revealed additional diversity. Surprisingly, no halophilic archaea were not shared between the two approaches. Combining both types of methods was considered the best approach to acquire better information on the characteristics of soil halophilic archaea.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of diversity of archaeal communities in Algerian chott.\",\"authors\":\"Imene Ikram Hassani, Inès Quadri, Archana Yadav, Sonia Bouchard, Didier Raoult, Hocine Hacène, Christelle Desnues\",\"doi\":\"10.1007/s00792-022-01287-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Halophilic archaea are the dominant type of microorganisms in hypersaline environments. The diversity of halophilic archaea in Zehrez-Chergui (Saharian chott) was analyzed and compared by both analysis of a library of PCR amplified 16S rRNA genes and by cultivation approach. This work, represents the first of its type in Algeria. A total cell count was estimated at 3.8 × 10<sup>3</sup> CFU/g. The morphological, biochemical, and physiological characterizations of 45 distinct strains, suggests that all of them might be members of the class Halobacteria. Among stains, 23 were characterized phylogenetically and are related to 6 genera of halophilic archaea.The dominance of the genus Halopiger, has not been reported yet in other hypersaline environments. The 100 clones obtained by the molecular approach, were sequenced, and analyzed. The ribosomal library of 61 OTUs showed that the archaeal diversity included uncultured haloarcheon, Halomicrobium, Natronomonas, Halomicroarcula, Halapricum, Haloarcula, Halosimplex, Haloterrigena, Halolamina, Halorubellus, Halorussus and Halonotius. The results of rarefaction analysis indicated that the analysis of an increasing number of clones would have revealed additional diversity. Surprisingly, no halophilic archaea were not shared between the two approaches. Combining both types of methods was considered the best approach to acquire better information on the characteristics of soil halophilic archaea.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-022-01287-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-022-01287-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Assessment of diversity of archaeal communities in Algerian chott.
Halophilic archaea are the dominant type of microorganisms in hypersaline environments. The diversity of halophilic archaea in Zehrez-Chergui (Saharian chott) was analyzed and compared by both analysis of a library of PCR amplified 16S rRNA genes and by cultivation approach. This work, represents the first of its type in Algeria. A total cell count was estimated at 3.8 × 103 CFU/g. The morphological, biochemical, and physiological characterizations of 45 distinct strains, suggests that all of them might be members of the class Halobacteria. Among stains, 23 were characterized phylogenetically and are related to 6 genera of halophilic archaea.The dominance of the genus Halopiger, has not been reported yet in other hypersaline environments. The 100 clones obtained by the molecular approach, were sequenced, and analyzed. The ribosomal library of 61 OTUs showed that the archaeal diversity included uncultured haloarcheon, Halomicrobium, Natronomonas, Halomicroarcula, Halapricum, Haloarcula, Halosimplex, Haloterrigena, Halolamina, Halorubellus, Halorussus and Halonotius. The results of rarefaction analysis indicated that the analysis of an increasing number of clones would have revealed additional diversity. Surprisingly, no halophilic archaea were not shared between the two approaches. Combining both types of methods was considered the best approach to acquire better information on the characteristics of soil halophilic archaea.