内质网应激与铁下垂分子相互作用的生物信息学分析。

IF 2.6 4区 医学 Q3 CELL BIOLOGY Analytical Cellular Pathology Pub Date : 2023-03-30 eCollection Date: 2023-01-01 DOI:10.1155/2023/9979291
Weihao Zhu, Yingmin Li, Meili Li, Jingmin Liu, Guowei Zhang, Xiaoying Ma, Weibo Shi, Bin Cong
{"title":"内质网应激与铁下垂分子相互作用的生物信息学分析。","authors":"Weihao Zhu, Yingmin Li, Meili Li, Jingmin Liu, Guowei Zhang, Xiaoying Ma, Weibo Shi, Bin Cong","doi":"10.1155/2023/9979291","DOIUrl":null,"url":null,"abstract":"<p><p>Stress has become a universal biological phenomenon in the body, which leads to pathophysiological changes. However, the molecular network interactions between endoplasmic reticulum (ER) stress and ferroptosis under stressful conditions are not clear. For this purpose, we screened the gene expression profile of GSE173795 for intersection with ferroptosis genes and screened 68 differentially expressed genes (DEGs) (63 up-regulated, 5 down-regulated), mainly related to lipid and atherosclerosis, autophagy-animal, mitophagy-animal, focal adhesion, DNA replication, proteasome, oocyte meiosis, toll-like receptor signaling pathway, cell cycle, etc. Immune infiltration analysis revealed that stress resulted in decreased B cells memory, T cells CD8 and T cells CD4 memory resting, monocytes, macrophages M2, and increased B cells naive, T cells follicular helper, and macrophages M1. 19 core-DEGs (ASNS, TRIB3, ATF4, EIF2S1, CEBPG, RELA, HSPA5, DDIT3, STAT3, MAP3K5, HIF1A, HNF4A, MAPK14, HMOX1, CDKN1A, KRAS, SP1, SIRT1, EGFR) were screened, all of which were up-regulated DEGs. These biological processes and pathways were mainly involved in responding to ER stress, lipid and atherosclerosis, cellular response to stress, cellular response to chemical stress, and regulation of DNA-templated transcription in response to stress, etc. Spearman analysis did not find MAPK14 to be significantly associated with immune cells. Other core-DEGs were associated with immune cells, including B cells naive, T cells follicular helper, and monocytes. Based on core-DEGs, 283 miRNAs were predicted. Among the 22 miRNAs with highly cross-linked DEGs, 11 had upstream lncRNA, mainly targeting STAT3, SP1, CDKN1A, and SIRT1, and a total of 39 lncRNA were obtained. 85 potential drugs targeting 11 core-DEGs were identified and were expected to be potential immunotherapeutic agents for stress injury. Our experiments also confirmed that Liproxstatin-1 alleviates common cross-linked proteins between ER stress and ferroptosis. In conclusion, our study explored the molecular mechanisms and network interactions among stress-ER stress-ferroptosis from a novel perspective, which provides new research ideas for studying stressful injury.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"9979291"},"PeriodicalIF":2.6000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079382/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioinformatics Analysis of Molecular Interactions between Endoplasmic Reticulum Stress and Ferroptosis under Stress Exposure.\",\"authors\":\"Weihao Zhu, Yingmin Li, Meili Li, Jingmin Liu, Guowei Zhang, Xiaoying Ma, Weibo Shi, Bin Cong\",\"doi\":\"10.1155/2023/9979291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stress has become a universal biological phenomenon in the body, which leads to pathophysiological changes. However, the molecular network interactions between endoplasmic reticulum (ER) stress and ferroptosis under stressful conditions are not clear. For this purpose, we screened the gene expression profile of GSE173795 for intersection with ferroptosis genes and screened 68 differentially expressed genes (DEGs) (63 up-regulated, 5 down-regulated), mainly related to lipid and atherosclerosis, autophagy-animal, mitophagy-animal, focal adhesion, DNA replication, proteasome, oocyte meiosis, toll-like receptor signaling pathway, cell cycle, etc. Immune infiltration analysis revealed that stress resulted in decreased B cells memory, T cells CD8 and T cells CD4 memory resting, monocytes, macrophages M2, and increased B cells naive, T cells follicular helper, and macrophages M1. 19 core-DEGs (ASNS, TRIB3, ATF4, EIF2S1, CEBPG, RELA, HSPA5, DDIT3, STAT3, MAP3K5, HIF1A, HNF4A, MAPK14, HMOX1, CDKN1A, KRAS, SP1, SIRT1, EGFR) were screened, all of which were up-regulated DEGs. These biological processes and pathways were mainly involved in responding to ER stress, lipid and atherosclerosis, cellular response to stress, cellular response to chemical stress, and regulation of DNA-templated transcription in response to stress, etc. Spearman analysis did not find MAPK14 to be significantly associated with immune cells. Other core-DEGs were associated with immune cells, including B cells naive, T cells follicular helper, and monocytes. Based on core-DEGs, 283 miRNAs were predicted. Among the 22 miRNAs with highly cross-linked DEGs, 11 had upstream lncRNA, mainly targeting STAT3, SP1, CDKN1A, and SIRT1, and a total of 39 lncRNA were obtained. 85 potential drugs targeting 11 core-DEGs were identified and were expected to be potential immunotherapeutic agents for stress injury. Our experiments also confirmed that Liproxstatin-1 alleviates common cross-linked proteins between ER stress and ferroptosis. In conclusion, our study explored the molecular mechanisms and network interactions among stress-ER stress-ferroptosis from a novel perspective, which provides new research ideas for studying stressful injury.</p>\",\"PeriodicalId\":49326,\"journal\":{\"name\":\"Analytical Cellular Pathology\",\"volume\":\"2023 \",\"pages\":\"9979291\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Cellular Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9979291\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/9979291","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

应激已成为人体内普遍存在的一种生物现象,并导致病理生理变化。然而,内质网应激与应激条件下铁下垂之间的分子网络相互作用尚不清楚。为此,我们筛选GSE173795基因表达谱与上铁基因交叉,筛选出68个差异表达基因(DEGs)(63个上调,5个下调),主要与脂质和动脉粥样硬化、自噬动物、有丝分裂动物、局灶黏着、DNA复制、蛋白酶体、卵母细胞减数分裂、toll样受体信号通路、细胞周期等相关。免疫浸润分析显示,应激导致B细胞记忆、T细胞CD8和T细胞CD4记忆静息、单核细胞、巨噬细胞M2降低,B细胞幼稚、T细胞滤泡辅助和巨噬细胞M1增加。共筛选到19个核心基因(ASNS、TRIB3、ATF4、EIF2S1、CEBPG、RELA、HSPA5、DDIT3、STAT3、MAP3K5、HIF1A、HNF4A、MAPK14、HMOX1、CDKN1A、KRAS、SP1、SIRT1、EGFR),均为上调基因。这些生物学过程和途径主要涉及内质网应激、脂质和动脉粥样硬化的应答、细胞对应激的应答、细胞对化学应激的应答、应激时dna模板转录的调控等。Spearman分析未发现MAPK14与免疫细胞显著相关。其他核心deg与免疫细胞相关,包括幼稚B细胞、辅助滤泡T细胞和单核细胞。基于core-DEGs,共预测了283个mirna。在22个DEGs高度交联的mirna中,有11个具有上游lncRNA,主要靶向STAT3、SP1、CDKN1A和SIRT1,共获得39个lncRNA。共鉴定出85种靶向11个核心degs的潜在药物,有望成为应激损伤的潜在免疫治疗药物。我们的实验也证实了利普司他汀-1减轻内质网应激和铁下垂之间常见的交联蛋白。综上所述,本研究从一个全新的视角探索了应激-内质网应激-铁下垂的分子机制和网络相互作用,为研究应激性损伤提供了新的研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioinformatics Analysis of Molecular Interactions between Endoplasmic Reticulum Stress and Ferroptosis under Stress Exposure.

Stress has become a universal biological phenomenon in the body, which leads to pathophysiological changes. However, the molecular network interactions between endoplasmic reticulum (ER) stress and ferroptosis under stressful conditions are not clear. For this purpose, we screened the gene expression profile of GSE173795 for intersection with ferroptosis genes and screened 68 differentially expressed genes (DEGs) (63 up-regulated, 5 down-regulated), mainly related to lipid and atherosclerosis, autophagy-animal, mitophagy-animal, focal adhesion, DNA replication, proteasome, oocyte meiosis, toll-like receptor signaling pathway, cell cycle, etc. Immune infiltration analysis revealed that stress resulted in decreased B cells memory, T cells CD8 and T cells CD4 memory resting, monocytes, macrophages M2, and increased B cells naive, T cells follicular helper, and macrophages M1. 19 core-DEGs (ASNS, TRIB3, ATF4, EIF2S1, CEBPG, RELA, HSPA5, DDIT3, STAT3, MAP3K5, HIF1A, HNF4A, MAPK14, HMOX1, CDKN1A, KRAS, SP1, SIRT1, EGFR) were screened, all of which were up-regulated DEGs. These biological processes and pathways were mainly involved in responding to ER stress, lipid and atherosclerosis, cellular response to stress, cellular response to chemical stress, and regulation of DNA-templated transcription in response to stress, etc. Spearman analysis did not find MAPK14 to be significantly associated with immune cells. Other core-DEGs were associated with immune cells, including B cells naive, T cells follicular helper, and monocytes. Based on core-DEGs, 283 miRNAs were predicted. Among the 22 miRNAs with highly cross-linked DEGs, 11 had upstream lncRNA, mainly targeting STAT3, SP1, CDKN1A, and SIRT1, and a total of 39 lncRNA were obtained. 85 potential drugs targeting 11 core-DEGs were identified and were expected to be potential immunotherapeutic agents for stress injury. Our experiments also confirmed that Liproxstatin-1 alleviates common cross-linked proteins between ER stress and ferroptosis. In conclusion, our study explored the molecular mechanisms and network interactions among stress-ER stress-ferroptosis from a novel perspective, which provides new research ideas for studying stressful injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Cellular Pathology
Analytical Cellular Pathology ONCOLOGY-CELL BIOLOGY
CiteScore
4.90
自引率
3.10%
发文量
70
审稿时长
16 weeks
期刊介绍: Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.
期刊最新文献
Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Exosomal PDL1 Suppresses the Anticancer Activity of CD8+ T Cells in Hepatocellular Carcinoma. AZD8055 Is More Effective Than Rapamycin in Inhibiting Proliferation and Promoting Mitochondrial Clearance in Erythroid Differentiation. Malignant Transformation of Normal Oral Tissue to Dysplasia and Early Oral Squamous Cell Carcinoma: An In Silico Transcriptomics Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1